Open Access
Issue
MATEC Web Conf.
Volume 129, 2017
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2017)
Article Number 03026
Number of page(s) 4
Section Modelling of Technical Systems. CAD/CAM/CAE Systems
DOI https://doi.org/10.1051/matecconf/201712903026
Published online 07 November 2017
  1. Z.Sh. Geyler, Self-tuning active control systems (Machine Building, Moscow 1978) [Google Scholar]
  2. A.N. Gavrilov (red.), Precision of production in mechanical engineering and instrument making (Machine Building, Moscow, 1973) [Google Scholar]
  3. S.S. Volosov, Fundamentals of precision dimensional active control (Machine Building, Moscow, 1969) [Google Scholar]
  4. M.S. Nevelson, Automatic control of metalworking accuracy (Machine Building, Leningrad, 1973) [Google Scholar]
  5. V.Ya. Kopp, A.A. Skidan, A.I. Balakin, O.V. Filipovich, Analysis of differential entropy in engineering measurements in mechanical engineering and instrument making, Proc. of the Odessa Polytechnic University, 1(27), PP. 214–219 (2007) [Google Scholar]
  6. R.E. Kalman, A New Approach to Linear Filtering and Prediction, Transaction ASME Journal of Basic Engineering, 86, PP. 35–45 (1960). [CrossRef] [Google Scholar]
  7. A.V. Balakrishnan, Kalman Filtering Theory. (Optimization Software, Inc., 1984) [Google Scholar]
  8. J.C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control (Hoboken, New Jersey: Wiley, 2003). [CrossRef] [Google Scholar]
  9. G. Welch, G. Bishop, An Introduction to the Kalman Filter (Los Angeles, 2001). [Google Scholar]
  10. B.D.O. Anderson, J.B. Moore, Optimal Filtering (New York, Dover, 2005). [Google Scholar]
  11. Yu.E. Voskoboinikov, Recursive estimation of the state vector of the dynamic system (Novosibirsk, NSTU 2014) [Google Scholar]
  12. Yu.E. Voskoboinikov, The divergence criterion and the algorithm for adapting the recurrent algorithm for estimating the state vector, Scientific bulletin of the NSTU, 3(60), PP. 7–22 (2015) [EDP Sciences] [Google Scholar]
  13. R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, Second Edition (John Wiley & Sons, Inc., 1992) [Google Scholar]
  14. A. Gelb, Applied Optimal Estimation (MIT Press, Cambridge, MA., 1974) [Google Scholar]
  15. Mohinder S. Grewal, P. Andrews Angus, Kalman Filtering Theory and Practice (Upper Saddle River, NJ USA, Prentice Hall, 1993) [Google Scholar]
  16. O.L.R. Jacobs, Introduction to Control Theory, 2nd Edition (Oxford University Press, 1993) [Google Scholar]
  17. Richard Lewis, Optimal Estimation with an Introduction to Stochastic Control Theory (John Wiley & Sons, Inc., 1986). [Google Scholar]
  18. Peter S. Maybeck, Stochastic Models, Estimation, and Control (Academic Press, Inc., 1979) [Google Scholar]
  19. J.C. Bertein, R. Ceschi, Processus stochastiques et filtrage de Kalman (Hermes, 1998) [Google Scholar]
  20. C.K. Chui, G. Chen, Kalman Filtering (Springer-Verlag, 1987) [Google Scholar]
  21. Mourad Barkat, Signal Detection and Estimation (Artech House Inc, 2005) [Google Scholar]
  22. I.N. Sinitsyn, Kalman and Pugachev Filters (Moscow, 2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.