Open Access
MATEC Web Conf.
Volume 128, 2017
2017 International Conference on Electronic Information Technology and Computer Engineering (EITCE 2017)
Article Number 05006
Number of page(s) 6
Section Electromechanical Technologies
Published online 25 October 2017
  1. Maidanik G. Response of Ribbed Panels to Reverberant Acoustic Field. Journal of the Acoustical Society of America, 34(6), 809–826 (1962). [CrossRef] [Google Scholar]
  2. Wallace C.E. Radiation resistance of a rectangular panel. Journal of the Acoustical Society of America, 51(3), 946–952(1972). [CrossRef] [Google Scholar]
  3. Heckl M. Radiation from plane sound sources. Acustica. 37, 155–166(1977). [Google Scholar]
  4. Leppington F.G, Broadbent E.G, Heron K.H. Acoustic radiation from rectangular panels with constrained edges. Proceedings of Royal Society London A, 393, 67–84(1984). [CrossRef] [Google Scholar]
  5. Syder S, Tanaka N. Calculating total acoustic power output using modal radiation efficiencies. Journal of the Acoustical Society of America, 97, 1702–1709(1995). [CrossRef] [Google Scholar]
  6. Li W.L, Gibeling H.J. Determination of the mutual radiation resistances of a rectangular plate and their impact on the radiated sound power. Journal of Sound and Vibration, 229(5) , 1213–1233(2000). [CrossRef] [Google Scholar]
  7. Li W.L, Gibeling H.J. An analytical solution for the self and mutual radiation resistance efficiency. Journal of Sound and Vibration, 245(1) ,1–16(2001). [CrossRef] [Google Scholar]
  8. Crighton D.G. Force and moment admittance of plates under arbitrary fluid loading. Journal of Sound and Vibration, 20, 209–218(1972). [CrossRef] [Google Scholar]
  9. Crighton D.G. Approximations to the admittances and free wavenumbers of fluid-loaded panels. Journal of Sound and Vibration, 68, 15–33(1980). [CrossRef] [Google Scholar]
  10. Leibowitz R.C. Methods for computing fluid loading and the vibratory response of fluid-loaded finite rectangular plates subject to turbulence excitation-option 3. NSRDC Rep, 2976C(1971). [Google Scholar]
  11. Rumerman M.L. The effect of loading on radiation efficiency. Journal of the Acoustical Society of America, 111(1), 75–79 (2002). [CrossRef] [Google Scholar]
  12. Sandman B.E. Fluid-loaded vibration of an elastic plate carrying a concentrated mass. Journal of the Acoustical Society of America ,61(6), 1503–1510(1977). [CrossRef] [Google Scholar]
  13. Williams EG. Numerical evaluation of the radiation from unbaffled, finite plates using the FFT. Journal of the Acoustical Society of America, 74(1), 343–347 (1983). [CrossRef] [Google Scholar]
  14. Atalla N, Nicolas J, Gauthier C. Acoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions. J. Acoust. Soc. Am., 99(3), 1484–1494(1996). [CrossRef] [Google Scholar]
  15. Oppenheimer C.H, Dubrowsky S. A radiation efficiency for unbaffled plates with experimental validation. J. Acoust. Soc. Am., 199(3), 473–489(1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.