Open Access
MATEC Web Conf.
Volume 128, 2017
2017 International Conference on Electronic Information Technology and Computer Engineering (EITCE 2017)
Article Number 02013
Number of page(s) 4
Section Simulation Model and Algorithm
Published online 25 October 2017
  1. Greenlee LF, Lawler D F, Freeman B.D, Marrot B., Moulin P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water research, 43, 2317–2348 (2009). [Google Scholar]
  2. Fosselard G., Wangnick K. Comprehensive study on capital and operational expenditures for different types of seawater desalting plants (RO, MVC, ME, ME-TVC, MSF) rated between 200 m3/d and 3,000 m3/d. Desalination, 76, 215–240 (1989). [CrossRef] [Google Scholar]
  3. Wang D., Li Z Y, Zhu Y Q. Lubrication and tribology in seawater hydraulic piston pump. Journal of Marine Science and Application, 2, 35–40(2003). [CrossRef] [EDP Sciences] [Google Scholar]
  4. Jibin H., Yunfei Z., Xinjun Z., Shihua Y. Balancing characteristics of flow divider pintle in ball piston pump. Transactions of the Chinese Society of Agricultural Engineering, (2008). [Google Scholar]
  5. WANG W Z, LIU Y Z, JIANG P N, CHEN H P. Numerical analysis of leakage flow through two labyrinth seals. Journal of Hydrodynamics, 19, 107–112 (2007). [CrossRef] [Google Scholar]
  6. Kim TS, Cha KS. Comparative analysis of the influence of labyrinth seal configuration on leakage behavior. Journal of Mechanical Science and Technology, 23, 2830–2838 (2009). [CrossRef] [Google Scholar]
  7. Schramm V., Denecke J., Kim S., Wittig S. Shape optimization of a labyrinth seal applying the simulated annealing method. International Journal of Rotating Machinery, 10, 365–371 (2004). [CrossRef] [Google Scholar]
  8. Zhao W., Nielsen T., Billdal J. Effects of cavity on leakage loss in straight-through labyrinth seals. 25th IAHR Symposium on Hydraulic Machinery and Systems 2010 (2010). [Google Scholar]
  9. Rhode DL, Adams RG. Rub-groove width and depth effects on flow predictions for straight-through labyrinth seals. Journal of Tribology, 126, 781–787 (2004). [CrossRef] [Google Scholar]
  10. Braun E., Dullenkopf K., Bauer H-J. Optimization of labyrinth seal performance combining experimental, numerical and data mining methods. Proceedings of ASME Turbo Expo, Copenhagen, Denmark (2012). [Google Scholar]
  11. Chochua G., Shyy W., Moore J. Computational modeling for honeycomb-stator gas annular seal. International journal of heat and mass transfer, 45, 1849–1863 (2002). [CrossRef] [Google Scholar]
  12. FrA D., Bochon K. Influence of Honeycomb Rubbing on the Labyrinth Seal Performance. Journal of Engineering for Gas Turbines and Power, 139, 012502 (2017). [Google Scholar]
  13. Li J., Kong S., Yan X., Obi S., Feng Z. Numerical investigations on leakage performance of the rotating labyrinth honeycomb seal. Journal of Engineering for Gas Turbines and Power, 132, 062501 (2010). [CrossRef] [Google Scholar]
  14. Gao R., Kirk G. CFD study on stepped and drum balance labyrinth seal. Tribology Transactions, 56, 663–671 (2013). [CrossRef] [Google Scholar]
  15. Wang W., Liu Y., Meng G., Jiang P. Nonlinear analysis of orbital motion of a rotor subject to leakage air flow through an interlocking seal. Journal of Fluids and Structures, 25, 751–765 (2009). [CrossRef] [EDP Sciences] [Google Scholar]
  16. Marsis E., Morrison G. Leakage and Rotordynamics Numerical Study of Circular Grooved and Rectangular Grooved Labyrinth Seals. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, Texas, USA, (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.