Open Access
MATEC Web Conf.
Volume 128, 2017
2017 International Conference on Electronic Information Technology and Computer Engineering (EITCE 2017)
Article Number 01003
Number of page(s) 4
Section Signal & Image Processing
Published online 25 October 2017
  1. Boll, S.F., Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process, 1979. 27 (2): p. 113–120. [Google Scholar]
  2. Ephraim, Y. and D. Malah, Speech enhancement using a minimum mean square error log-spectral amplitude estimator. IEEE Trans. Acoust., Speech, Signal Process, 1985. SSP-33,(2): p. 443–445. [CrossRef] [Google Scholar]
  3. Ephraim, Y. and D. Malah, Speech enhancement using a minimum mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and SignalProcessing, 1984. vol. ASSP-32 (6): p. 1109–1121. [CrossRef] [Google Scholar]
  4. Stark, A. and K. Paliwal, Use of speech presence uncertainty with MMSE spectral energy estimation for robust automatic speech recognition. Speech Communication, 2011 (53): p. 51–61. [CrossRef] [Google Scholar]
  5. Soon, I.Y. and S.N. Koh. Low distortion speech enhancement. in Inst. Elec. Eng. 2000. [Google Scholar]
  6. Wiener, N., Extrapolation, Interpolation, and Smoothing of Stationary Time Series. 1949, New York: Wiley. [Google Scholar]
  7. Plapous, C., C. Marro, and P. Scalart, Improved Signal-to-Noise Ratio Estimation for Speech Enhancement IEEE Transactions on Acoustics, Speech, and Signal Processing, 2006. 14 (6): p. 2098–2108. [Google Scholar]
  8. Scalart, P. and J. Vieira-Filho, Speech enhancement based on a priori signal to noise estimation, in Proc. 21st IEEE Int. Conf. Acoust. Speech Signal Processing. 1996: Atlanta, GA. p. 629–632. [Google Scholar]
  9. Moor, B.D., The singular value decomposition and long and short spaces of noisy matrices. IEEE Trans. on Signal Processing, 1993. 41 (9): p. 2826–2839. [CrossRef] [Google Scholar]
  10. Ephraim, Y. and H. Van Trees, A signal subspace approach for speech enhancement. IEEE Trans. Speech Audio Process., 1995. 3 (4): p. 251–266. [CrossRef] [Google Scholar]
  11. Doclo, S. and M. Moonen, GSVD-Based Optimal Filtering for Single and Multimicrophone Speech Enhancement. IEEE Transactions on signal processing, 2002. 50 (9): p. 2230–2242. [CrossRef] [Google Scholar]
  12. Hu, Y. and P.C. Loizou, A Generalized Subspace Approach for Enhancing Speech Corrupted by Colored Noise. IEEE Transactions on Audio, Speech and Language Processing 2003. 11 (4): p. 334–342. [Google Scholar]
  13. Hermus, K., P. Wambacq, and H.V. hamme, A Review of Signal Subspace Speech Enhancement and Its Application to Noise Robust Speech Recognition. EURASIP Journal on Advances in Signal Processing, 2007: p. 1–15. [Google Scholar]
  14. Saadoune, A., A. Amrouche, and S.-A. Selouani, Perceptual subspace speech enhancement using variance of the reconstruction error. Digital Signal Processing, 2014. 22: p. 187–196. [Google Scholar]
  15. Surendran, S. and T.K. Kumar, Variance normalized perceptual subspace speech enhancement. International Journal of Electronics and Communications, 2017. 74: p. 44–54. [CrossRef] [Google Scholar]
  16. Wright, J., Y. Peng, and Y. Ma, Robust Principal Component Analysis: Exact Recovery of Corrupted Low-rank Matrices by Convex Optimization. In NIPS, 2009. [Google Scholar]
  17. Jolliffe, I.T., Principal Component Analysis. Springer Series in Statistics. 2002, New York: Springer. [Google Scholar]
  18. Candes, E.J. and T. Terence, The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory, 2010. 56 (5): p. 2053–2080. [CrossRef] [Google Scholar]
  19. Candes, E.J., et al., Robust Principal Component Analysis? Journal of the ACM, 2011. 58 (3): p. 1–37. [CrossRef] [Google Scholar]
  20. Sun, C., Q. Zhu, and M. Wan, A novel speech enhancement method based on constrained low-rank and sparse matrix decomposition. Speech Communication, 2013. 60 (12): p. 44–55. [CrossRef] [Google Scholar]
  21. Chang, S.G., B. Yu, and M. Vetterli, Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Transactions on Information Theory, 2000. 9 (9): p. 1532–1547. [Google Scholar]
  22. Loizou, P.C., Speech Enhancement: Theory and Practice. 2007, New York: Taylor & Francis. [Google Scholar]
  23. Quatieri, T., Discrete-Time Speech Signal Processing: Principles and Practice. 2002, Prentice Hall, Upper Saddle River, NJ. [Google Scholar]
  24. Cohen, I., Speech Enhancement Using a Noncausal A Priori SNR Estimator. IEEE Signal Processing Letters, 2004. 11 (9): p. 725–728. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.