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Abstract—In this paper, a new subspace speech enhancement method using low-rank and sparse decomposition is 
presented. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective 
rank for the underlying human speech signal. Then the low-rank and sparse decomposition is performed with the 
guidance of speech rank value to remove the noise. Extensive experiments have been carried out in white Gaussian 
noise condition, and experimental results show the proposed method performs better than conventional speech 
enhancement methods, in terms of yielding less residual noise and lower speech distortion. 
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1. Introduction  
Speech enhancement refers to the improvement in quality 
and intelligibility of noise corrupted speech signals by 
using supervised or unsupervised speech enhancement 
methods. It is widely used as a pre-processing block in a lot 
of applications like automatic speech recognizer and other 
communication systems. 

Over the last fifty decades, many algorithms have been 
proposed about for speech enhancement. The typical 
algorithms including spectral subtraction[1], minimum 
mean square error (MMSE) estimation [2-4], Wiener 
filtering [5-8], and subspace methods [9-13].  Spectral 
Subtraction and Wiener filtering have been widely used for 
enhancing speech because of their simplicity and ease of 
implementation in single channel systems but they suffer 
from the production of musical noise after enhancement 
and is one of their major drawbacks. Signal subspace 
approach [9-13], have shown to give a better compromise 
between less residual noise and signal distortion of the 
output signal, compared to the other existing techniques.  

Signal subspace approach was firstly proposed by 
Ephraim Y, et al. The principle of this method is to separate 
the noisy speech observation space into a signal subspace 
and a noise subspace, and the enhanced speech was 
constructed using only the components of the signal within 
the signal subspace. In the subspace-based algorithms, 
subspace decomposition is a critical step for subspace 
separation, which is often performed via Karhunen-Loeve 
transform (KLT)[10] or singular value decomposition 
(SVD) [9]. The main issue in developing a subspace-based 
model is the way of splitting and refining the signal and 
noise subspace in an optimal way. In [14], variance of the 
reconstruction error criterion was introduced to optimize 
the subspace selection for speech enhancement. In [15], to 

optimize the subspace decomposition model, human 
auditory psychoacoustic properties are incorporated into 
the subspace filter to reconstruct the enhanced signal. 
Although many efforts were conducts to improve the 
subspace methods, the existing subspace-based speech 
enhancement methods still suffer from the problem of low 
decomposition accuracy in the presence of large noise, 
resulting in a high remainder noise within enhanced speech 
in strong noise cases. 

In this paper, we propose a new subspace-based method 
for speech enhancement based on the principle of low-rank 
and sparse decomposition (LSD). The main idea behind our 
method is motivated by the recent development of low-
rank and sparse theory [16]. According to this theory, if a 
given corrupted data matrix Y has an underlying low-rank 
structure, yet corrupted by sparse additive noises. The 
underlying low-rank component L can be effectively 
recovered by solving a convex optimization problem, even 
if the noise is arbitrary in magnitude. In the time domain, 
owing to the short-time stability of human speech, speech 
signals can be assumed to have a low-rank structure. On 
the other hand, due to the randomness of noise, background 
noise is more variable and thus can be viewed as sparse and 
high-rank. Thus LSD theory can be exploited to recover the 
underlying speech from corrupted speech signals. 

The rest of the paper is organized as follows. We first 
briefly review the previous works in Section 2. In Section 
3, we describe the LSD based signal subspace speech 
enhancement method. Section 4 presents the experiments 
and results. Finally, we give the concludes and future work 
in section 5.  

2. Related work 
The goal of principal component analysis (PCA) technique 
is to determine the most significant basis to re-express a 
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noisy speech set [17]. This new basis will filter out the 
noise and reduce a multidimensional speech to lower 
dimensions by avoiding redundant data. 

Let us consider the problem of the enhancement of a 
speech signal contaminated by an independent additive 
noise. Let x(t) and d(t) denote the sampled clean speech and 
noise signal, respectively. The observed noisy speech 
signal y(t) is 

         ( ) ( ) ( ).y t x t d t                   (1) 
Suppose y(t) was framed with the length N.  

Arranging the N-dimensional vectors into a (M-l+1)×l 
Toeplitz structure matrix, we can get  

.Y X D                            (2) 
Assuming that the rank of matrix Y is r, the optimal 

enhanced speech matrix X̂  can be estimated according to 
the following least-square criterion 
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 denotes the Frobenius norm of a matrix 
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If d(t) is a white Gaussian noise, it satisfies the 
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d  is 
the variance of noise. The optimal solution of (4) can be 
obtained by applying singular value decomposition (SVD) 
of Y. 
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Here, U and V are two orthogonal matrices holding the 
left and right (approximate) singular vectors of given 
matrix, and  is a diagonal matrix holding the singular 
values: 1 2 1r r      . 

The above low-rank matrix X̂  represents the original 
speech matrix X in the sense of least-square minimization. 
This may get the optimal estimate when the noise is small, 
independent, and identically distributed Gaussian. 

However, PCA is highly sensitive to the presence of 
large corruptions. Even a single outlier in the data matrix 
can render the estimation of the low-rank component 
arbitrarily far from the true model. In [16], a new theory 
called Robust PCA was developed for this shortcoming. 
The basic idea of Robust PCA is to decompose the data 
matrix M as M=L+S, where N KS ´Î ¡ is a sparse matrix 
with a sparse number of non-zero coefficients with 
arbitrarily large magnitude. RPCA can be solved by 
minimizing the following convex program 

* 1
min ,  s.t.  ,L S M L S                (5)  

where *
  denotes the matrix nuclear norm, which is 

defined as the sum of all singular values and is suggested as 
a convex surrogate to the rank function [18]. 1

 denotes 
the l1-norm of a matrix, which is defined as the sum of the 
absolute values of matrix elements. This problem is known 
to have a stable solution provided L and S are sufficiently 
incoherent [19], i. e., the low-rank matrix is not sparse and 
the sparse matrix is not low-rank. More recently, RPCA 
theory was introduced into the speech enhancement task in  
[20], where a constrained low-rank and sparse matrix 

decomposition (CLSMD) algorithm is designed for noise 
reduction. 

3. LSD based speech denoising method 
In this work, we propose a new subspace 

decomposition algorithm based on the LSD, which is less 
sensitive to the large noise interferences.  

Firstly, we formulate the speech enhancement problem 
as the following optimization problem, 
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The above formula can be solved by alternatively 
solving the following two formulas until convergence 
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Given an estimate of sparse matrix 1,iS  the 
minimization in (7-a) over L is to learn a rank-r low-rank 
matrix from partial observations. This is a fixed-rank 
approximation problem, we can solve it use bilateral 
random projections (BRP) based fast low-rank matrix 
approximation. 

1
1 2 1 2( )T T

tL M A M M                        (8) 
Where 1 1 2 2,  .TM YA M Y A   Both 1

n rA R  and 

2
m rA R  are Gaussian random matrices. 

The minimization in (7-b) over S is to learn a sparse 
matrix from partial observations. This can be computed via 
entry-wise hard thresholding function [21], 

( ) 1( ),T x x x u                             (9) 
which keeps the input if it is larger than the threshold; 
otherwise, it is set to zero. In summary, we have following 
optimization algorithm for LSD. 

Algorithm 1. Optimization algorithm for LSD 
 Given r, T, ε, tmaxiter; 
 Initialize 0Y Y , [0]t N KS  , t=0;  
while not converged do 

%Update of low-rank matrix L  
1 ( , )A randn n r ; 

2 ( , )A randn m r  

1 1

2 2

,  t
T

t

M Y A
M Y A
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1
1 2 1 2( )T T

tL M A M M ; 
%Update of  sparse matrix S 

t t t tX Y L S   ; 
  ( )t t tS X X T   ; 

      % Stopping criteria 
If 2 2/t t F F

Y L S Y    or t= = tmaxiter 
break; 

end 
t t t tY L X S    

1;t t   
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end while 
output: L= tL , S= tS  
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Figure 1. The scheme of LSD based speech enhancement 

method 

Figure 1 shows the scheme of LSD based speech 
enhancement method. At first, the noisy speech signal is 
divided into frames in the time domain. Then we arrange 
each frame of the noisy speech into a Toeplitz matrix. After 
we estimated the effective rank r with the analysis-by-
synthesis approach [22], the noisy speech matrix Y is 
decomposed into the low-rank matrix L with the rank r 
using the LSD algorithm. Since L is not a Toeplitz matrix, 
we average all the diagonal elements of L to let it became 
a Toeplitz matrix form. Finally, the enhanced speech is 
constructed by taking the inverse transform of Toeplitz 
matrix followed by least-squares overlap-add synthesis 
[23]. 

4. Experimental results 
For evaluation of the proposed JLSMD method, we choose 
a total of 30 sentences (sp01~sp30) taken from NOIZEUS 
database. Both speech and noise were sampled at 8 kHz 16 
bits. Time frame length is 264 sample points  with 50% 
frame overlap. White Gaussian noise was added to clean 
speech at various levels.  We use segSNR and PESQ 
((Perceptual Evaluation of Speech Quality) scores for 

performance measure. four conventional speech 
enhancement methods: spectral subtraction (SSboll [1]), 
Subspace SVD based subspace decomposition algorithm 
(SSVD) [9], Wiener filter based method (Wiener [8]), 
minimum mean-square error algorithm (MMSE [24]), KLT 
[12] and CLSMD [20]). 

Tables 1 and 2 show the comparison of performance in 
terms of PESQ and segSNR scores. The larger the PESQ-
MOS and segSNR scores are, the better the performances 
are. We can see the proposed method LSD has got the 
highest PESQ-MOS and segSNR scores among all the 
compared methods, except at 0 dB where CLSMD has the 
highest segSNR score. 

Table 1. PESQ scores in the white noise case at different SNRs 
Method
s 

0 dB 5 dB 10 dB 15 dB 

KLT 1.100 3.529 5.937 8.058 

MMSS -0.464 0.787 2.119 3.374 

SSboll -3.519 -2.213 -1.061 0.051 

SSVD 0.4106 2.9652 5.4880 7.9579 
CLSMD 2.146 3.685 4.856 5.640 
LSD 1.468 3.970 6.596 9.074 

Table 2. PESQ scores in the white noise case at different 
SNRs 

Methods 0 dB  5 dB  10 dB  15 dB 

KLT 1.994 2.397 2.744 3.078 
MMSS 1.455 1.710 2.140 2.498 
SSboll  1.651 1.943 2.179 2.462 
SSVD 1.713 2.194 2.596 2.972 
CLSMD 2.009 2.384 2.587 2.720 
LSD 2.055 2.478 2.844 3.198 

 

 
Figure 2. Comparison of the spectrograms for speech enhanced 

by different methods 
Fig. 2 presents spectrogram comparisons for various 

speech enhancement methods in the 10 dB SNR. We can 
see from these enhanced speech spectrograms. Along with 
the high levels of noise reduction, the proposed LSD based 
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method is still able to preserve most of the low-energy 
speech components compared with the seven speech 
enhancement methods. 

5. Conclusions 
In this paper, we presented a LSD based signal subspace 
speech enhancement method. The proposed method is less 
sensitive to the large interferences as compared with 
traditional algorithms, and can significantly reduce noise. 
Experiments demonstrate that the proposed method is good 
at improving the overall enhanced speech quality, 
especially in low SNRs. It should be pointed out that LSD 
method has improved the original subspace method based 
on SVD and can wipe out more residual noise. In the future 
research work we will devote more efforts to improving the 
noise reduction performancein the colored noise.  
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