Open Access
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
Article Number 05005
Number of page(s) 5
Section Signal Processing
Published online 04 October 2017
  1. G. Faber, Uber die ortogonalen functionen des Hern Haar, Iahrscber Deutsch, Math. Verein, BD. 195, 104–112 (1910). [Google Scholar]
  2. J. Schauder, Zur Theorie stetiger Abbildungen in Funktionalraumen, Math. Z., 26(1927), 47–65. [CrossRef] [Google Scholar]
  3. M. G. Grigorian, A. A. Sargsyan, Nonlinear approximation of continuous functions by the Faber-Schauder system, Mat. Sb.vol. 199:5, p 629–653 (2008). [CrossRef] [Google Scholar]
  4. T. M. Grigoryan, On the unconditional convergence of series with respect to the Faber-Schauder system, Analysis Mathematica, 39, 179–188 (2013). [CrossRef] [Google Scholar]
  5. A. A. Talalyan, Representation of measurable functions by series, Usp. Mat. Nauk, 15, no. 5 Russian Math. Surveys, 1, (Russian) (1960). [Google Scholar]
  6. Casper Goffman, “Remark on a problem of Lusin”, Acta Math.,vol 111, p. 63–72S (1964). [CrossRef] [Google Scholar]
  7. V. G. Krotov “On the series by the Faber-Schauder system and by bases in C[0,1]”, Mat. Zamet.,vol. 14, p. 185–195 (1973). [Google Scholar]
  8. M. G. Grigoryan, V. G. Krotov, Luzin’s Correction Theorem and the Coefficients of Fourier Expansions in the Faber-Schauder System, Mat. Zametki 93, no. 2, 172–178 (2013). [CrossRef] [Google Scholar]
  9. M. G. Grigorian and T. M. Grigoryan, On the absolute convergece Schauder series, Advances in Theoretical and Applied Mathematics,V. 9, n. 1 (2014), [Google Scholar]
  10. Karlin, Bases in Banach spaces, Duke Math. J., 15, 971–985 (1948). [CrossRef] [Google Scholar]
  11. R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Advances in Computational Math., 5, 173–187 (1996). [CrossRef] [Google Scholar]
  12. T. W. Korner, Decreasing rearranged Fourier series, J. Fourier Anal. Appl. 5, no. 1, 1–19 (1999). [CrossRef] [Google Scholar]
  13. S. V. Konyagin and V. N. Тemlyakov, “A remark on Greedy approximation in Banach spaces”, East Journal on Approximations, 5:1, 1–15 (1999). [Google Scholar]
  14. P. Wojtaszczyk, “Greedy Algorithm for General Biorthogonal Systems”, Journal of Approximation Theory, 107, 293–314 (2000). [CrossRef] [Google Scholar]
  15. M. G. Grigoryan, K. S. Kazaryan and F. Soria, “Mean convergence of orthogonal Fourier series of modified functions”, Trans. Amer. Math. Soc. 352:8, 3777–3798 (2000). [CrossRef] [Google Scholar]
  16. M. G. Grigoryan and R. E. Zink, “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc. 134, 3495–3505 (2006). [CrossRef] [Google Scholar]
  17. N. N. Luzin, On the fundamental theorem of the integral calculus, Sb. Math. 28, 266–294 (in Russian) (1912). [Google Scholar]
  18. D. E. Menchoff [D. E. Men`shov], Sur la convergence uniforme des series de Fourier, Sb. Math. 53, no. 11, 67–96 (1942). [Google Scholar]
  19. M. G. Grigoryan, Modifications of functions, Fourier coefficients and nonlinear approximation, Sb. Math. 203, no. 3, 49–78 (2012). [CrossRef] [EDP Sciences] [Google Scholar]
  20. M. G. Grigorian (Grigoryan), On the convergence of Fourier series in the metric of L¹, Anal. Math. 17, no. 3, 211–237 (1991). [CrossRef] [Google Scholar]
  21. M. G. Grigorian, Uniform convergence of the greedy algorithm with respect to the Walsh system, Studia Math. 198, no. 2, 197–206 (2010). [CrossRef] [Google Scholar]
  22. M. G. Grigoryan, L. N. Galoyan, On the uniform convergence of negative order Cesaro means of Fourier series, J. Math. Anal. Appl. 434, no. 1, 554–567 (2016). [CrossRef] [Google Scholar]
  23. M. G. Grigoryan, A. A. Sargsyan, On the universal functions for the class Lp[0,1], J. Funct. Anal. 270, 3111–3133 (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.