Open Access
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
Article Number 04021
Number of page(s) 6
Section Computers
Published online 04 October 2017
  1. M. Beyer, Gartner says solving ‘big data’ challengeinvolves more than just managing volumes of data.(2011) [Google Scholar]
  2. D. Jelonek, The problem of information overload inthe information society (in Polish), ZeszytyNaukowe Ekonomiczne Problemy UsługUniwersytet Szczeciński, T.1, 650 (2011) [Google Scholar]
  3. J. Dong, Y. Qin, X.Y. Sun, L.M. Du, Research onImproved Collaborative Filtering RecommendationAlgorithm on MapReduce. In MATEC Web ofConferences, 63, p. 04018, EDP Sciences (2016) [EDP Sciences] [Google Scholar]
  4. E. Brynjolfsson, L.M. Hitt, H.H. Kim, Strength innumbers: How does data-driven decisionmakingaffect firm performance? (2011) [Google Scholar]
  5. F. Provost, T. Fawcett, Data science and itsrelationship to big data and data-driven decisionmaking, Big Data, 1(1) (2013) [CrossRef] [Google Scholar]
  6. T. Kraska, Finding the needle in the big datasystems haystack. IEEE Internet Comput 17 (2013) [Google Scholar]
  7. A. Fernández, S. del Río, V. López, A. Bawakid, M.J. del Jesus, J.M. Benítez, F. Herrera, Big Datawith Cloud Computing: an insight on the computingenvironment, MapReduce, and programmingframeworks, Wiley Interdisciplinary Reviews: DataMining and Knowledge Discovery, 4(5) (2014) [Google Scholar]
  8. J. Bloem, M. Van Doorn, S. Duivestein & E. vanOmmeren, Creating clarity with big data. SogetiVINT, (2012). [Google Scholar]
  9. J. Wielki, Analysis of the possibilities of using bigdata in e-business (in Polish), Prace Naukowe/Uniwersytet Ekonomiczny w Katowicach (2014) [Google Scholar]
  10. T. Davenport, P. Barth, R. Bean, How ‘Big Data’ is Different, MIT Sloan Management Review, 54(1)(2012) [Google Scholar]
  11. Big Data. What it is and why it matters, (10.01.2017) [Google Scholar]
  12. A. McAfee, E. Brynjolfsson, T.H. Davenport, D.J. Patil, D. Barton, Big data. The managementrevolution. Harvard Bus Rev, 90(10) (2012) [Google Scholar]
  13. IBM, Big Data at the Speed of Business, (2014)[Online]. Available: (12.01.2017). [Google Scholar]
  14. S. Sagiroglu, D. Sinanc, Big data: A review. InCollaboration Technologies and Systems (CTS), 2013 International Conference on IEEE, (2013) [Google Scholar]
  15. C. Eaton, D. Deroos, T. Deutsch, G. Lapis and P.C. Zikopoulos, Understanding Big Data: Analytics forEnterprise Class Hadoop and Streaming Data, McGraw-Hill Companies, 978–0–07–179053–6, (2012) [Google Scholar]
  16. (2017.01.22). [Google Scholar]
  17. R. Gupta, H. Gupta, M. Mohania, Cloud computingand big data analytics: what is new from databasesperspective?, In: 1st International Conference onBig Data Analytics (BDA), New Delhi, India, (2012) [Google Scholar]
  18. M. Rouse, “Big data”,, 2011. (2017.02.20) [Google Scholar]
  19. I. Pawełoszek, J. Wieczorkowski, Big data as abusiness opportunity: an Educational Perspective, In: Computer Science and Information Systems(FedCSIS), 2015 Federated Conference on. IEEE, (2015) [Google Scholar]
  20. S. LaValle, Big data, analytics and the path frominsights to value, MIT Sloan Management Review, (2011) (20.02.2017) [Google Scholar]
  21. J. Liebowitz, Big data and business analytics, BocaRaton FL [etc.]: CRC Press: Taylor & FrancisGroup. (2013) [CrossRef] [Google Scholar]
  22. T. Davenport, Big Data @ Work: Dispelling theMyths, Uncovering the Opportunities, HarvardBusiness School Press, Boston (2014) [Google Scholar]
  23. V. Mayer-Schonberger, K. Cukier, Big Data. Revolution which will change the way we think, work and live (in Polish), MT Biznes, Warszawa(2014) [Google Scholar]
  24. A. Chluski, L. Ziora, The role of big data solutionsin the management of organizations. Review ofselected practical examples, Procedia ComputerScience 65 (2015) [Google Scholar]
  25. F. Provost, T. Fawcett, Data Science for Business:What you need to know about data mining and data-analytic thinking, O’Reilly Media, Inc. (2013) [Google Scholar]
  26. Economist Intelligence Unit survey, September 2014 (2017.01.20) [Google Scholar]
  27. B. Qing, J. Wang, J. Cheng, Research on OntologyModeling of Steel Manufacturing Process Based onBig Data Analysis, MATEC Web of Conferences, 45, EDP Sciences (2016) [Google Scholar]
  28. B. Schmarzo, Big Data. Understanding how datapowers big businesses, Wiley (2013) [Google Scholar]
  29. T. Davenport, J. Dyché, Big data in big companies,International Institute for Analytics (2013) [Google Scholar]
  30. Computerworld Polska (2014). Raport Big data +,Systemy analityki wielkich zbiorów danych wpolskich organizacjach. Computerworld Polska. [Google Scholar]
  31. D. Jelonek, C. Stępniak, T. Turek, L. Ziora,Identification of mental barriers in theimplementation of cloud computing in the SMEs in Poland, In Computer Science and InformationSystems (FedCSIS), 2014 Federated Conference on IEEE (2014) [Google Scholar]
  32. (2017.02.10) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.