Open Access
Issue
MATEC Web Conf.
Volume 120, 2017
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
Article Number 09003
Number of page(s) 8
Section Geographic Information Systems & Remote Sensing
DOI https://doi.org/10.1051/matecconf/201712009003
Published online 09 August 2017
  1. R.R. Rindfuss, P.C. Stern, Linking remote sensing and social science. In S. Liverman et al. (Eds.), People and pixel-linking remote sensing and social science (pp. 1–28).Washington, DC: National Academic Press (1998)
  2. M. Herold, H. Couclelis, K.C. Clarke, The Role of Spatial Metrics in the Analysis and Modeling of Urban Land Use Change. Computers, Environment and Urban Systems 29, 369–399 (2005) [CrossRef]
  3. F. Priem, F. Canter, Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping. Remote sensing 8, 787 (2016) [CrossRef]
  4. D.S. Lu, Q.H. Weng, Use of impervious surface in urban land-use classification. Remote Sensing of Environment 102, 146–160 (2006) [CrossRef]
  5. R. Welch, Spatial resolution requirements for urban studies. International Journal of Remote Sensing 3(2), 139–146 (1982) [CrossRef]
  6. R.R. Jensen, P.J. Hardin, A.J. Hardin, Classification of urban tree species using hyperspectral data. Geocarto International 27, 443–458 (2012) [CrossRef]
  7. E. Ben-Dor, Imaging spectrometry for urban applications. In Imaging Spectrometry: Basic Principles and Prospective Applications; F.D. Van Der Meer, S.M. De Jong, Eds.; Kluwer Academic Publishers: Dordrecht, The Netherland; pp. 243–281 (2001)
  8. D.A. Roberts, M. Herold, Imaging spectroscopy of urban materials. In Infrared Spectroscopy in Geochemistry, Exploration and Remote Sensing; P. King, M.S. Ramsey, G. Swayze, Eds.; Mineral Association of Canada: Ottawa, ON, Canada; pp. 155–181 (2004)
  9. S. Gadal, W. Ouerghemmi, Morpho-spectral objects classification by hyperspectral airborne imagery, 8th Workshop in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Aug. 2016, LosAngeles, USA (2016)
  10. S. Pascucci, C. Bassani, R.M. Cavalli, L. Fusilli, A. Palombo, S. Pignatti, F. Santini, Hyperspectral remote sensing capability for mapping near-surface asbestos deposits and pollutants dispersion in soils. Proc. Hyperspectral 2010 Workshop, Frascati, Italy, 17–19 March (2010)
  11. C. Cilia, C. Panigada, M. Rossini, G. Candiani, M. Pepe, R. Colombo, Mapping of asbestos cement roofs and their weathering status using hyperspectral aerial images. ISPRS International Journal of Geo-Information 4, 928–941(2015) [CrossRef]
  12. Z. Miao, W. Shi, A new methodology for spectral-spatial classification of hyperspectral images. Journal of Sensors, Vol. 2016, 12 pages (2016) [CrossRef]
  13. A. Hervieu, A. Le Bris, C. Mallet, Fusion of hyperspectral and VHR multispectral image classifications in urban areas. ISPRS Annals of Photogrammetry, Remote Sensing and the Spatial Information Sciences, Vol. III-3, Prague, Czech Republic, 12-19 July (2016)
  14. S. Michel, M.J. Lefevre-Fonollosa, S. Hosford, HYPXIM – A hyperspectral satellite defined for science, security and defence users. Proc. ‘Hyperspectral 2010 Workshop’, Frascati, Italy, 17–19 March (2010)
  15. Y. Boucher, L. Poutier, V. Achard, X. Lenot, C. Miesch, Validation and robustness of an atmospheric correction algorithm for hyperspectral images. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, N° 4725-54, SPIE AeroSense 2002, Orlando, FL., 1-5 April (2002)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.