Open Access
MATEC Web Conf.
Volume 120, 2017
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
Article Number 05001
Number of page(s) 8
Section Water and Environment
Published online 09 August 2017
  1. Holmberg A., Modelling of the activated sludge process for microprocessor-based state estimation and control, water research 16, 1233–1246, (1982). [CrossRef] [Google Scholar]
  2. P. Samuelsson, B. Halvarsson, Bengt Carlsson, cost efficient operation of a denitrifying activated sludge process, Water Research., 41, P2325–2332, (2007) [CrossRef] [Google Scholar]
  3. Fernandez FJ., Castro MC., Rodrigo M.A., Canizares P., Reduction of aeration costs by tuning a multi-set point on/off controller: A case study, Control Engineering Practice 19, 1231–1237 (2011). [CrossRef] [Google Scholar]
  4. Rieger L., Alex J., Gujer W., & Siegrist H., Modelling of aeration systems at wastewater treatment plants. Water Science & Technology, 53, 439–447 (2006) [CrossRef] [EDP Sciences] [Google Scholar]
  5. Duchène Ph., Cotteux E., & Capela S., Applying fine bubble aeration to small aeration tanks. Water Science & Technology, 44(2–3), 203–210 (2001). [CrossRef] [Google Scholar]
  6. Rustom R, Modelling Activated Sludge Wastewater Treatment Plants Using Artificial Intelligence Techniques (Fuzzy Logic and Neural Networks), thèse doctorat, Heriot Watt University, UK (2009). [Google Scholar]
  7. Mafalda C., Sarraguça et al., Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy, Anal Bioanal Chem.,395,1159–1166, (2009). [CrossRef] [Google Scholar]
  8. Tong R. M, Beck M. B., Latten A.,, fuzzy control of the activated sludge wastewater treatment process, aulomatica, vol. 16, pp. 659–701 pergamon press, (1989) [Google Scholar]
  9. Lefkir A., Maachou R., Bermad A., Khouider A., Factorization of physicochemical parameters of activated sludge process using the principal component analysis, Desalination and Water Treatment, 1–6 (2015). [Google Scholar]
  10. Chen Y, Zhiqiang C, Abraham K, application of fuzzy reasoning to the control of an activated sludge plant*, fuzzy sets and systems 38 1–14 (1990) [CrossRef] [Google Scholar]
  11. Ruano M.V., J. Ribes., Sin G., Seco A., Ferrer J., A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs, Environmental Modelling & Software 25, 670–676 (2010) [CrossRef] [Google Scholar]
  12. Bououden S., Chadli M.,.Karimi H.R. 2015, Control of uncertain highly nonlinear biological process based on Takagi–Sugeno fuzzy models, Signal Processing, 108–205 Mafalda et al., (2009). [Google Scholar]
  13. Grizale P V H, Modélisation et commande floues de type Takagi-Sugeno appliquées à un bioprocédé de traitement des eaux usées, thèse d’état, Automatic. Université Paul Sabatier, Toulouse III, (2007) [Google Scholar]
  14. Maachou R., Lefkir A., Khouider A. And Bermad A., control of recycle sludge in activated sludge process using adaptive neuro-fuzzy logic controller (anfis) proceedings of the 14th international conference on environmental science and technology rhodes, greece, 3–5 september, (2015) [Google Scholar]
  15. Qiao J, Li W, Han H, Soft Computing of Biochemical Oxygen Demand Using an Improved T–S Fuzzy Neural Network Chinese Journal of Chemical Engineering 22 (2014) 1254–1259, (2014). [CrossRef] [Google Scholar]
  16. Tyagi K, Arun Sharma., An adaptive neuro fuzzy model for estimating the reliability of component-based software systems, 38–51, Applied Computing and informatics, (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.