Open Access
Issue
MATEC Web Conf.
Volume 120, 2017
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
Article Number 03004
Number of page(s) 10
Section Recycling for Sustainable Concrete
DOI https://doi.org/10.1051/matecconf/201712003004
Published online 09 August 2017
  1. US Geological Survey. Minerals commodity summary - cement USA: USGS; (2016) [cited 2016 October 6]. [Google Scholar]
  2. Afkhami B, Akbarian B, Beheshti A N, Kakaee AH, Shabani B. Energy consumption assessment in a cement production plant. Sustainable Energy Technol and Assess. 10:84–9 (2015). [CrossRef] [EDP Sciences] [Google Scholar]
  3. Thakur RN, Wu Z. Development of High-Performance Blended Cements. USA: The University of Wisconsin; (2000). [Google Scholar]
  4. High-Alkali Davidovits J. Cements for 21st Century Concretes. Special Publication. 144 (1994). [Google Scholar]
  5. Benhelal E, Zahedi G, Shamsaei E, Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production. 51:142–61 (2013). [Google Scholar]
  6. Herzog HJ, Eliasson B, Kaarstad O. Capturing greenhouse gases. Scientific American. 282:72–9 (2000). [CrossRef] [Google Scholar]
  7. Earth System Research Laboratory. Trends in Atmospheric Carbon Dioxide. (2013). [Google Scholar]
  8. Davidovits J, editor Chemistry of Geopolymeric Systems, Terminology. 2nd International Conference on Geopolymer; Saint Qunentin; (1999). [Google Scholar]
  9. Yang K-H, Song J-K, Lee J-S. Properties of alkali-activated mortar and concrete using lightweight aggregates. Materials and Structures. 43(3):403–16 (2010). [CrossRef] [Google Scholar]
  10. Li Z, Ding Z, Zhang Y, editors. Development of Sustainable Cementitious Materials. International Workshop on Sustainable Development and Concrete Technology; Beijing, China; (2004). [Google Scholar]
  11. Wallah SE, Rangan BV. Low-Calcium Fly Ash Based Geopolymer Concrete: Long-Term Properties. Perth, Australia: Curtin University of Technology, (2006). [Google Scholar]
  12. Gourley J, Johnson G, editors. Developments in Geopolymer Precast Concrete. Fourth World Congress Geopolymer; Saint-Quentin, France; (2005). [Google Scholar]
  13. Abdullah MMAB, Jamaludin L, Hussin K, Bnhussain M, Ghazali CMR, Ahmad MI. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure. International Journal of Molecular Sciences. 13(4):4388 (2012). [CrossRef] [Google Scholar]
  14. Abdullah MMAB, Hussin K, Bnhussain M, Ismail KN, Yahya Z, Abdul Razak R. Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent. International Journal of Molecular Sciences. 13(6):7186 (2012). [CrossRef] [Google Scholar]
  15. Nath P, Sarker PK. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater. 66:163–71 (2014). [Google Scholar]
  16. Puertas F, Fernandez-Jimenez A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem Concr Compos. 25:287–92 (2003). [CrossRef] [EDP Sciences] [Google Scholar]
  17. Puertas F, Martiez-Ramirez S, Alonso S, Vazquez T. Alkali-activated fly ash/slag cement strength behaviour and hydration products. Cem Concr Res. 30:1625–32 (2000). [CrossRef] [Google Scholar]
  18. Akçaözoğlu S, Atiş CD. Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates. Constr Build Mater. 25(10):4052–8 (2011). [Google Scholar]
  19. Wang SD, Scrivener KL. 29Si and 27Al NMR study of alkali-activated slag. Cem Concr Res. 33:769–74 (2003). [CrossRef] [Google Scholar]
  20. Das S, Yang P, Singh SS, Mertens JCE, Xiao X, Chawla N, et al. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models. Cem Concr Res. 78, Part B:252–62 (2015). [CrossRef] [Google Scholar]
  21. Abdulkareem OA, Albakri MM, Hussin K, Ismail KN, Binhussain M. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures. Materials.6:4450–61 (2013). [CrossRef] [Google Scholar]
  22. Lee NK, Lee HK. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater. 47:1201–9 (2013). [CrossRef] [Google Scholar]
  23. Izquierdo M, Querol X, Davidovits J, Antenucci D, Nugteren H, Fernández-Pereira C. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching. Journal of Hazardous Materials. 166(1):561–6 (2009). [CrossRef] [Google Scholar]
  24. Mollah MYA, Yu W, Schennach R, Cocke DL. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem Concr Res. 30(2):267–73 (2000). [Google Scholar]
  25. Al-Majidi MH, Lampropoulos A, Cundy A, Meikle S. Development of geopolymer mortar under ambient temperature for in situ applications. Constr Build Mater. 120:198–211 (2016). [CrossRef] [Google Scholar]
  26. Ferone C, Colangelo F, Roviello G, Asprone D, Menna C, Balsamo A, et al. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer. Materials. 6(5):1920 (2013). [CrossRef] [Google Scholar]
  27. Nath SK, Kumar S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr Build Mater. 38:924–30 (2013). [CrossRef] [Google Scholar]
  28. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel. 90(6):2118–24 (2011). [Google Scholar]
  29. Colella C. Use of Thermal Analysis in Zeolite Research and Application. In: Rincon JM, Romero M, editors. Characterization Techniques of Glasses and Ceramics. Berlin, Heidelberg. p. 112–37: Springer Berlin Heidelberg; (1999). [CrossRef] [Google Scholar]
  30. Perera DS, Vance ER, Finnie KS, Blackford MG, Hanna JV, Cassidy DJ. Disposition of Water in Metakaolinite Based Geopolymers. Advances in Ceramic Matrix Composites XI. p. 225–36: John Wiley & Sons, Inc.; (2006). [Google Scholar]
  31. Wang K, Shah SP, Mishulovich A. Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem Concr Res. 34(2):299–309 (2004). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.