Open Access
Issue
MATEC Web Conf.
Volume 120, 2017
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
Article Number 01003
Number of page(s) 9
Section Sustainable Structural Systems
DOI https://doi.org/10.1051/matecconf/201712001003
Published online 09 August 2017
  1. The Human cost of weather related disasters, http://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf [Google Scholar]
  2. F. N. Catbas, D. L. Brown, & A. E. Aktan, “Parameter estimation for multiple-input multiple-output modal analysis of large structures”, Journal of engineering mechanics, 130, 8, pp. 921–930 (2004) [CrossRef] [Google Scholar]
  3. S. W. Doebling, C. R. Farrar, & M. B. Prime, “A summary review of vibration-based damage identification methods”, Shock and vibration digest, 30, 2, pp. 91–105 (1998) [Google Scholar]
  4. S. S. Ivanovic, M. D. Trifunac, & M. I. Todorovska, “Ambient vibration tests of structures-a review”, ISET Journal of Earthquake Technology, 37, 4, pp. 165–197 (2000) [Google Scholar]
  5. J. M. Caicedo, E. Clayton, S. J. Dyke, M. Abe, & J. Tokyo, “Structural health monitoring for large structures using ambient vibrations”, Proceedings of ICANCEER Conference, Hong Kong, pp. 379–384 (2002) [Google Scholar]
  6. D. F. Mazurek, & J. T. DeWolf, “Experimental study of bridge monitoring technique”, Journal of Structural Engineering, 116, 9, pp. 2532–2549 (1990) [CrossRef] [Google Scholar]
  7. B. Glisic, D. Inaudi, J. M. Lau, & C. C. Fong, “Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors”, Smart Materials and Structures, 22, 5, pp. 055030 (2013) [CrossRef] [Google Scholar]
  8. H. R. Kess, & D. E. Adams, “Investigation of operational and environmental variability effects on damage detection algorithms in a woven composite plate”, Mechanical systems and signal processing, 21, 6, pp. 2394–2405 (2007) [CrossRef] [Google Scholar]
  9. M. R. Jahanshahi, & S. F. Masri, “A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation”, Smart materials and structures, 22, 3, pp. 035019 (2013) [CrossRef] [Google Scholar]
  10. Chen, ZhiQiang, and Jianfei Chen. “Mobile Imaging and Computing for Intelligent Structural Damage Inspection.” Advances in Civil Engineering, 2014 (2014) [CrossRef] [Google Scholar]
  11. Z. Zhu, S. German, and I. Brilakis. “Detection of large-scale concrete columns for automated bridge inspection.” Automation in construction, 19, 8, pp. 1047–1055 (2010) [CrossRef] [Google Scholar]
  12. A. Ellenberg, L. Branco, A. Krick, I. Bartoli, & A. Kontsos. “Use of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation”. Journal of Infrastructure Systems, 21, 3, (2014) [Google Scholar]
  13. Chaiyasarn, K., Kim, T. K., Viola, F., Cipolla, R., & Soga, K. “Distortion-Free Image Mosaicing for Tunnel Inspection Based on Robust Cylindrical Surface Estimation through Structure from Motion”. Journal of Computing in Civil Engineering, 04015045 (2015) [Google Scholar]
  14. Bay, H., Tuytelaars, T., & Van Gool, L., “Surf: Speeded up robust features”, In Computer vision–ECCV 2006, Springer Berlin Heidelberg, pp. 404–417 (2006) [Google Scholar]
  15. Park, Seunghee, et al. “Magnetic flux leakage sensing-based steel cable NDE technique.” Shock and Vibration, 2014 (2014) [Google Scholar]
  16. Mandal, K., D. Dufour, and D. L. Atherton. “Use of magnetic Barkhausen noise and magnetic flux leakage signals for analysis of defects in pipeline steel.” IEEE transactions on magnetics, 35, 3, pp. 2007–2017 (1999) [CrossRef] [Google Scholar]
  17. Phantom Pro-3: http://www.dji.com/product/phantom-3-pro. Accessed 4 Feb 2016 [Google Scholar]
  18. Vex Robotic Kit: http://www.vexrobotics.com/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.