Open Access
MATEC Web Conf.
Volume 119, 2017
The Fifth International Multi-Conference on Engineering and Technology Innovation 2016 (IMETI 2016)
Article Number 01047
Number of page(s) 10
Published online 04 August 2017
  1. T. Ishihara and H. Yasuura, Voltage scheduling problem for dynamically variable voltage processors, Proceedings of International Symposium on Low Power Electronics and Design, 197-202 (1998) [CrossRef] [Google Scholar]
  2. A. Manzak and C. Chakrabarti, Variable voltage task scheduling for minimizing energy or minimizing power, Islped Proceedings of the International Symposium on Low Power Electronics and Design, 6 (2), 3239-3242 (2000) [Google Scholar]
  3. M.S. Al Hashimi, Considering power variations of DVS processing elements for energy minimisation in distributed systems, International Symposium on System Synthesis, 250-255 (2001) [Google Scholar]
  4. T. Burd, T. Pering, A. Stratakos, and R. Brodersen, A dynamic voltage scaled microprocessor system, IEEE International Solid state Circuits Conference, 35 (11), 1571-1580 (2000) [CrossRef] [Google Scholar]
  5. F. Yao, A. Demers, and S. Shenker, A scheduling model for reduced CPU energy, Foundations of Computer Science Annual Symposium, 23 (25), 374-382 (1995) [Google Scholar]
  6. A. Qadi, S. Goddard, and S. Farritor, A dynamic voltage scaling algorithm for sporadic tasks, IEEE Real time Systems Symposium, 52-62 (2004) [Google Scholar]
  7. C. Scordino and G. Lipari, A resource reservation algorithm for power aware scheduling of periodic and aperiodic real time tasks, Computers IEEE Transactions, 55 (12), 1509-1522 (2007) [CrossRef] [Google Scholar]
  8. P. Pillai and K. Shin, Real time dynamic voltage scaling for low power embedded operating systems, Acm Sigops Operating Systems Review, 35 (5), 89-102 (2001) [CrossRef] [Google Scholar]
  9. S. Saewong and R. Rajkumar, Practical voltage scaling for fixed priority RT systems, IEEE Real time and Embedded Technology and Applications Symposium, 106-114 (2010) [Google Scholar]
  10. Y. Liu and A. Mok, An integrated approach for applying dynamic voltage scaling to hard real time systems, IEEE Real time and Embedded Technology and Applications Symposium, 116-123 (2003) [Google Scholar]
  11. H. Aydin, V. Devadas, and D. Zhu, System level energy management for periodic realtime tasks, Proceedings of IEEE 27th Real Time Systems Symposium, 313-322 (2006) [Google Scholar]
  12. N. Sinha, R. Chakrabarti, and P. Chattopadhyay, Evolutionary programming techniques for economic load dispatch, IEEE Transactions on Evolutionary Computation, 7 (1), 83-94 (2003) [CrossRef] [Google Scholar]
  13. V. Bilolikar, K. Jain, and M. Sharma, An adaptive crossover genetic algorithm with simulated annealing for multi mode resource constrained project scheduling with discounted cash flows, International Journal of Operational Research, 25 (1), 28-46 (2016) [CrossRef] [Google Scholar]
  14. A. Meng, Z. Li, H. Yin, S. Chen, and Z. Guo, Accelerating particle swarm optimization using crisscross search, Information Sciences, 329, 52-72 (2015) [CrossRef] [Google Scholar]
  15. O. Erol and I. Eksin, A new optimization method: big bang-big crunch, Advances in Engineering Software, 37 (2), 106-111 (2006) [CrossRef] [Google Scholar]
  16. B. Alatas, Uniform big bang-chaotic big crunch optimization, Communications in Nonlinear Science and Numerical Simulation, September, 16 (9), 3696-3703 (2011) [Google Scholar]
  17. C. Rao and G. Yesuratnam, Big bang and big crunch (BB BC) and firefly optimization (FFO): application and comparison to optimal power flow with continuous and discrete control variables, American Journal of Nursing, 104 (9), 26-26 (2004) [Google Scholar]
  18. H. Arabnejad and J. Barbosa, List scheduling algorithm for heterogeneous systems by an optimistic cost table, IEEE Transactions on Parallel and Distributed Systems, 25 (3), 682-694 (2014) [CrossRef] [Google Scholar]
  19. H. Topcuouglu, S. Hariri, and M.Y. Wu, Performance effective and low complexity task scheduling for heterogeneous computing, IEEE Trans. Parallel Dist. Systems, 13 (3), 260-274 (2002) [CrossRef] [Google Scholar]
  20. M. Schmitz and B. Al, Iterative schedule optimization for voltage scalable distributed embedded systems, Acm Trans. Embedded Comput. Syst, 3 (1), 182-217 (2004) [CrossRef] [Google Scholar]
  21. M. Tavazoei and M. Haeri, Comparison of different one dimensional maps as chaotic search pattern in chaos optimization algorithms, Applied Mathematics and Computation, 187 (2), 1076-1085 (2007) [CrossRef] [Google Scholar]
  22. S. Talatahari, B. Azar, R. Sheikholeslami, and A. Gandomi, Mperialist competitive algorithm combined with chaos for global optimization, Communications in Nonlinear Science & Numerical Simulation, 17 (3), 1312-1319 (2012) [CrossRef] [Google Scholar]
  23. Q. Pan, L. Wang, and L. Gao, A chaotic harmony search algorithm for the flow shop scheduling problem with limited buffers, Applied Soft Computing, 11 (8), 5270-5280 (2011) [CrossRef] [Google Scholar]
  24. S. Talatahari, A. Kaveh, and R. Sheikholeslami, An efficient charged system search using chaos for global optimization problems, International Journal of Optimization in Civil Engineering, 1 (2), 305-325 (2011) [Google Scholar]
  25. Y. Kang, An ant colony system for dynamic voltage scaling problem in heterogeous system, Lecture Notes in Electrical Engineering, 277, 73-81 (2013) [CrossRef] [Google Scholar]
  26. R.E. Lord, J.S. Kowalik, and S.P. Kumar, Solving linear algebraic equations on an mimd computer, J. ACM, 30 (1), 103-117 (1983) [CrossRef] [Google Scholar]
  27. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, MIT Press (1990) [Google Scholar]
  28. M.Y. Wu and D.D. Gajski, Hypertool: a programming aid for message passing systems, IEEE Trans. Parallel and Distributed Systems, 1 (3), 330-343 (1990) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.