Open Access
Issue
MATEC Web Conf.
Volume 117, 2017
RSP 2017 – XXVI R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering
Article Number 00084
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/201711700084
Published online 24 July 2017
  1. A. S. Ermakov, O. G. Mukhamedzhanova, To the enlightened development of the construction industry, Integration, partnership and innovation in building science and education.The collection of materials of the International Scientific Conference, 329–333, (2017) [Google Scholar]
  2. B. Skołud, Market oriented approach to the production management on the operational level, Adv. Mater. Res., 837, 663–668, (2014) [Google Scholar]
  3. K. N. McKay, G. W. Black, The evolution of a production planning system: A 10-year case study, Comput. Ind., 58(8–9), 756–771, (2007) [CrossRef] [Google Scholar]
  4. C. T. Maravelias, C. Sung, Integration of production planning and scheduling: Overview, challenges and opportunities, Comput. Chem. Eng., 33(12), 1919–1930, (2009) [CrossRef] [Google Scholar]
  5. I. C. Dima, M. Man, Managerial Systems, Methods, and Techniques Used in Scheduling Industrial Production, Industrial Production Management in Flexible Manufacturing Systems (IGI Global, 345–369, 2013) [CrossRef] [Google Scholar]
  6. I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro, S. Engell, I. E. Grossmann, J. Hooker, C. Méndez, G. Sand, J. Wassick, Scope for industrial applications of production scheduling models and solution methods, Comput. Chem. Eng., 62, 161–193, (2014) [Google Scholar]
  7. M. Baldea, I. Harjunkoski, Integrated production scheduling and process control: A systematic review, Comput. Chem. Eng., 71, 377–390, (2014) [CrossRef] [Google Scholar]
  8. D. A. Korolchenko, E. N. Degaev, A. F. Sharovarnikov, Dependence of Fire Extinguishing Efficacy of Low Expansion Foams Solutions Homology Sodium Sulfate on the Molecular Weight of the Surface-active Substances, 2nd International conference on material engineering and application (ICMEA 2015) [Google Scholar]
  9. D. Korolchenko, S. Voevoda, Influence of spreading structure in an aqueous solution-hydrocarbon system on extinguishing of the flame of oil products, MATEC Web of Conferences, 86, (2016) [Google Scholar]
  10. S. Maturana, E. Pizani, J. Vera, Scheduling production for a sawmill: A comparison of a mathematical model versus a heuristic, Comput. Ind. Eng., 59(4), 667–674, (2010) [CrossRef] [Google Scholar]
  11. M. K. Zanjani, M. Nourelfath, D. Ait-Kadi, Sawmill Production Planning Under Uncertainty: Modelling and Solution Approaches, Stochastic Programming, 347–395, (2012) [Google Scholar]
  12. M. K. Zanjani, D. A. Kadi, M. Nourelfath, A stochastic programming approach for sawmill production planning, IJMOR, 5(1), 1, (2013) [CrossRef] [Google Scholar]
  13. M. Varas, S. Maturana, R. Pascual, I. Vargas, J. Vera, Scheduling production for a sawmill: A robust optimization approach, Int. J. Prod. Econ., 150, 37–51, (2014) [CrossRef] [Google Scholar]
  14. A. Lobos, J. R. Vera, Intertemporal stochastic sawmill planning: Modeling and managerial insights, Comput. Ind. Eng., 95, 53–63, (2016) [CrossRef] [Google Scholar]
  15. D. Bredstrom, M. Ronnqvist, Integrated production planning and route scheduling in pulp mill industry, Proceedings of the 35th Annual Hawaii International Conference on System Sciences, (2002) [Google Scholar]
  16. G. Figueira, P. Amorim, L. Guimarães, M. Amorim-Lopes, F. Neves-Moreira, B. Almada-Lobo, A decision support system for the operational production planning and scheduling of an integrated pulp and paper mill, Comput. Chem. Eng., 77, 85–104, (2015) [CrossRef] [Google Scholar]
  17. J. C. Vidal, M. Mucientes, A. Bugarín, M. Lama, Machine scheduling in custom furniture industry through neuro-evolutionary hybridization, Appl. Soft Comput., 11(2), 1600–1613, (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.