Open Access
MATEC Web Conf.
Volume 114, 2017
2017 International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2017)
Article Number 04016
Number of page(s) 10
Section Chapter 4: Interdisciplinary
Published online 10 July 2017
  1. Luo, Y. Z., Tang, G. J., & Li, H. Y. Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm [J]. Aerospace Science and Technology, 2006, 10(6): 534–540. [CrossRef] [Google Scholar]
  2. Hughes, S. P., Mailhe, L. M., & Guzman, J. J. A comparison of trajectory optimization methods for the impulsive minimum fuel rendezvous problem[C]. In 26th Rocky Mountain Guidance and Control Conference. 2003: 3–6. [Google Scholar]
  3. Luo, Y. Z., Li, H. Y., & Tang, G. J. Hybrid approach to optimize a rendezvous phasing strategy[J]. Journal of Guidance, Control and Dynamics, 2007, 30(1): 185–191. [CrossRef] [Google Scholar]
  4. Luo, Y. Z., & Tang, G. J. Spacecraft optimal rendezvous controller design using simulated annealing[J]. Aerospace Science and Technology, 2005, 9(8): 732–737. [CrossRef] [Google Scholar]
  5. Luo, Y. Z., Tang, G. J., Li, Y. J., & Li, H. Y. Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 946–952. [CrossRef] [Google Scholar]
  6. F. Lawden. Optimal Trajectories for Space Navigation[J]. London Butter Worths. 1963 [Google Scholar]
  7. P. M. Lion, M. Handelsman. Primer Vector on Fixed-Time Impulsive Trajectories [J]. AIAA Journal. 1968, 6(1): 127–132. [CrossRef] [Google Scholar]
  8. Greenwood D T, Kern E A. Minimum-fuel thrust limited transfer trajectories between coplanar elliptic orbits[J]. AIAA Journal, 1970, 8(10): 1772–1779. [CrossRef] [Google Scholar]
  9. Hargraves C R, Paris S W. Direct trajectory optimization using nonlinear pro-gramming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4): 338–342. [CrossRef] [Google Scholar]
  10. Enright P J, Conway B A. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 994–1002. [CrossRef] [Google Scholar]
  11. Herman A L, Spencer D B. Optimal, low-thrust earth-orbit transfers using higher- order collocation methods[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 40–47. [CrossRef] [Google Scholar]
  12. Isaacs R. Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization[M]. Courier Dover Publications, 1999. 3–43 [Google Scholar]
  13. Anderson G M. Feedback control for a pursuing spacecraft using differential dynamic programming[J]. AIAA Journal, 1977, 15(8): 1084–1088. [CrossRef] [Google Scholar]
  14. Menon P K A, Calise A J, Leung S K M. Guidance laws for spacecraft pursuit-evasion and rendezvous[C]//AIAA Guidance Navigation and Control. 1988, 668–697. [Google Scholar]
  15. Mauro Pontani, Bruce A. Conway. Optimal Interception of Evasive Missile Warheads: Numerical Solution of the Differential Game[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1111–1122. [CrossRef] [Google Scholar]
  16. Mauro Pontani, Bruce A. Conway. Numerical Solution of the Three-Dimensional Orbital Pursuit–Evasion Game Orbital Pursuit–Evasion Game[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 474–487. [CrossRef] [Google Scholar]
  17. Stupik J, Pontani M, Conway B. Optimal pursuit-evasion spacecraft trajectories in the hill reference frame[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA: AIAA, 2012: 4882. [Google Scholar]
  18. Pontani M. Numerical Solution of Orbital Combat Games Involving Missiles and Spacecraft[J]. Dynamic Games and Applications, 2011, 1(4): 534–557. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.