Open Access
MATEC Web Conf.
Volume 108, 2017
2017 International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2017)
Article Number 13007
Number of page(s) 4
Section Biomedical Engineering
Published online 31 May 2017
  1. Katsuura A, Hukuda S, Saruhashi Y, Mori K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. European Spine Journal. 2001;10:320–324. [CrossRef] [Google Scholar]
  2. Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine part 2. Cervical spine soft tissue responses and biomechanical modeling. Clinical Biomechanics. 2001;16:1–27. [CrossRef] [Google Scholar]
  3. Ha SK. Finite element modeling of multi-level cervical spinal segments (c3–c6) and biomechanical analysis of an elastomer-type prosthetic disc. Medical engineering & physics. 2006;28:534–541. [CrossRef] [Google Scholar]
  4. Panzer MB, Fice JB, Cronin DS. Cervical spine response in frontal crash. Medical engineering & physics. 2011;33:1147–1159. [CrossRef] [Google Scholar]
  5. Nightingale RW, Winkelstein BA, Knaub KE, Richardson WJ, Luck JF, Myers BS. Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension. Journal of biomechanics. 2002;35:725–732. [CrossRef] [Google Scholar]
  6. Wheeldon JA, Pintar FA, Knowles S, Yoganandan N. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. Journal of biomechanics. 2006;39:375–380. [CrossRef] [PubMed] [Google Scholar]
  7. Dmitriev AE, Cunningham BW, Hu N, Sell G, Vigna F, McAfee PC. Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: An in vitro human cadaveric model. Spine. 2005;30:1165–1172. [CrossRef] [Google Scholar]
  8. Kretzer RM, Hsu W, Hu N, Umekoji H, Jallo GI, McAfee PC, Tortolani PJ, Cunningham BW. Adjacent-level range of motion and intradiscal pressure after posterior cervical decompression and fixation: An in vitro human cadaveric model. Spine. 2012;37:E778–E785. [CrossRef] [Google Scholar]
  9. Deb A, Haorongbam B, Diwakar J, Chou C. Efficient approximate methods for predicting behaviors of steel hat sections under axial impact loading. 2010. [Google Scholar]
  10. Jiang B, Zhu F, Jin X, Cao L, Yang KH. Computational modeling of the crushing behavior of skydex® material using homogenized material laws. Composite Structures. 2013;106:306–316. [CrossRef] [Google Scholar]
  11. Zhu F, Chou CC, Yang KH, Chen X, Wagner D, Bilkhu S. Application of am60b magnesium alloy material model to structural component crush analysis. International journal of vehicle safety. 2012;6:178–190. [CrossRef] [Google Scholar]
  12. Del Palomar AP, Calvo B, Doblaré M. An accurate finite element model of the cervical spine under quasi-static loading. Journal of biomechanics. 2008;41:523–531. [CrossRef] [Google Scholar]
  13. Toosizadeh N, Haghpanahi M. Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads. Scientia Iranica. 2011;18:1237–1245. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.