Open Access
MATEC Web Conf.
Volume 107, 2017
Dynamics of Civil Engineering and Transport Structures and Wind Engineering – DYN-WIND’2017
Article Number 00052
Number of page(s) 6
Published online 24 May 2017
  1. D. Bushnell, Computerized Buckling Analysis of Shells (Martinus Nijhoff, Dordrecht, 1985) [CrossRef] [Google Scholar]
  2. N. Yamaki, Elastic Stability of Circular Cylindrical Shells (North-Holland, Amsterdam, 1984) [Google Scholar]
  3. L. A. Samuelson, S. Eggwertz, Shell Stability Handbook (Elsevier, London, 1992) [Google Scholar]
  4. J. G. Teng, Buckling of thin shells: Recent advances and trends. Appl. Mech. Rev. 49, 4, 263–274 (1996) [CrossRef] [Google Scholar]
  5. J. Arbocz, J. H. Starnes, Future directions and challenges in shell stability analysis. Thin. Wall. Struct. 40, 9, 729–754 (2002) [CrossRef] [Google Scholar]
  6. D. W. Murray, E. L. Wilson, Finite element postbuckling analysis of thin elastic plates, AIAA J. 7, 1915–1920 (1969) [CrossRef] [Google Scholar]
  7. P. Sharifi, E. P. Popov, Nonlinear buckling analysis of sandwich arches, J. Eng. Mech. Div. 97, 1397–1412 (1971) [Google Scholar]
  8. A. B. Sabir, A. C. Lock, The application of finite elements to the large-deflection geometrically non-linear behavior of cylindrical shells in variational methods in engineering, Proceedings on an international conference held at the University of Southampton, Session VII, Southampton University Press, Southampton, GB, 67–76 (1972) [Google Scholar]
  9. E. Riks, The application of Newton´s method to the problem of elastic stability, J. Appl. Mech. 39, 1060–1066 (1972) [CrossRef] [Google Scholar]
  10. J. L. Batoz, G. Dhatt, Incremental displacement algorithms for non-linear problems. Int. J. Numer. Meth. Eng. 14, 1262–1266 (1979) [CrossRef] [Google Scholar]
  11. P. Wriggers, J. C. Simo, A general procedure for the direct computation of turning and bifurcation points, Int. J. Numer. Meth. Eng. 30, 155–176 (1990) [CrossRef] [Google Scholar]
  12. K. J. Bathe, Finite element procedures in engineering analysis (Prentice-Hall, Englewood Cliffs, NJ., 1982) [Google Scholar]
  13. M. A. Crisfield, A fast incremental/iterative solution procedure that handles snap-through, Comput. Struct. 13, 55–62 (1981) [CrossRef] [Google Scholar]
  14. M. Fafard, B. Massicotte, Geometrical interpretation of the arc-length method. Comput. Struct. 46, 4, 603–615 (1993) [CrossRef] [Google Scholar]
  15. J. G. Teng, Y. F. Luo, A user-controlled arc-length method for convergence to predefined deformation states, Commun. Numer. Meth. En. 14, 51–58 (1998) [CrossRef] [Google Scholar]
  16. ANSYS User´s Manual 13.0. Swanson Analysis Systems, Inc. (2010) [Google Scholar]
  17. J. Ravinger, Vibration of Imperfect Thin-Walled Panel. Part 1: Theory and Illustrative Examples. Part 2: Numerical Results and Experiment. Thin. Wall. Struct. 19, 1, 1–36 (1994) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.