Open Access
Issue
MATEC Web Conf.
Volume 104, 2017
2017 2nd International Conference on Mechanical, Manufacturing, Modeling and Mechatronics (IC4M 2017) – 2017 2nd International Conference on Design, Engineering and Science (ICDES 2017)
Article Number 02015
Number of page(s) 6
Section Chapter 2: Engineering Simulation, Modeling and Mechatronics
DOI https://doi.org/10.1051/matecconf/201710402015
Published online 14 April 2017
  1. A. Kamal, V. Giurgiutiu, Stiffness Transfer Matrix Method (STMM) for stable dispersion curves solution in anisotropic composites, in, 2014, pp. 906410–906410–906414.
  2. J.L. Rose, C.J. Lissenden, Guided wave mode and frequency selection tips, (2014) 358–364.
  3. W.T. Thomson, Transmission of Elastic Waves through a Stratified Solid Medium, Journal of Applied Physics, 21 (1950) 89–93. [CrossRef] [MathSciNet]
  4. N.A. Haskell, The Dispersion Of Surface Waves On Multi -Layered Media, B Seismol Soc Am, 43 (1951) 86–103.
  5. L. Knopoff, A matrix method for elastic wave problems, B Seismol Soc Am, 54 (1964).
  6. T. Pastureaud, V. Laude, S. Ballandras, Stable scattering-matrix method for surface acoustic waves in piezoelectric multilayers, Appl Phys Lett, 80 (2002) 2544–2546. [CrossRef]
  7. Y. Guo, W. Chen, Y. Zhang, Guided wave propagation in multilayered piezoelectric structures, Sci China Ser G, 52 (2009) 1094–1104. [CrossRef]
  8. Z. Ma, J. Chen, B. Li, Z. Li, X. Su, Dispersion analysis of Lamb waves in composite laminates based on reverberation-ray matrix method, Composite Structures, 136 (2016) 419-429. [CrossRef]
  9. L.Gavric, Computation of Propagative Waves in Free Rail Using a Finite-Element Technique, J Sound Vib, 185 (1995) 531–543. [CrossRef]
  10. T. Mazuch, Wave dispersion modelling in anisotropic shells and rods by the finite element method, J Sound Vib, 198 (1996) 429-438. [CrossRef]
  11. S. Sorohan, N. Constantin, M. Gavan, V Anghel, Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes, Ultrasonics, 51 (2011) 503515. [CrossRef]
  12. I. Bartoli, A. Marzani, F.L. di Scalea, E. Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section, J Sound Vib, 295 (2006) 685–707. [CrossRef]
  13. J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, Legendre polynomial approach for modeling free-ultrasonic waves in multilayered plates, Journal of Applied Physics, 85 (1999) 3419-3427. [CrossRef]
  14. V Lancellotti, R. Orta, Guided waves in layered cubic media: Convergence study of a polynomial expansion approach, J Acoust Soc Am, 104 (1998) 2638–2644. [CrossRef]
  15. J.G. Yu, F.E. Ratolojanahary, J.E. Lefebvre, Guided waves in functionally graded viscoelastic plates, Composite Structures, 93 (2011) 2671–2677. [CrossRef]
  16. O. Bou Matar, N. Gasmi, H. Zhou, M. Goueygou, A. Talbi, Legendre and Laguerre polynomial approach for modeling of wave propagation in layered magneto-electro-elastic media, J Acoust Soc Am, 133 (2013) 1415–1424. [CrossRef]
  17. C.F. He, H.Y. Liu, Z.H. Liu, B. Wu, The propagation of coupled Lamb waves in multilayered arbitrary anisotropic composite laminates, J Sound Vib, 332 (2013) 7243–7256. [CrossRef]
  18. C. Othmani, S. Dahmen, A. Njeh, M.H. Ben Ghozlen, Investigation of guided waves propagation in orthotropic viscoelastic carbon-epoxy plate by Legendre polynomial method, Mech Res Commun, 74 (2016) 27–33. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.