Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 06015
Number of page(s) 17
Section Water and Wastewater Treatment Process
DOI https://doi.org/10.1051/matecconf/201710306015
Published online 05 April 2017
  1. M. Ghaedi, H. Tavallali, M. Sharifi, S.N. Kokhdan, and A. Asghari, Preparation of low cost activated carbon from Myrtus Communis and pomegranate and their efficient application for removal of congo red from aqueous solution, Spectrochimica Acta Part A, 86, 107–114 (2012) [CrossRef] [Google Scholar]
  2. V.K. Gupta and Suhas, Application of low-cost adsorbents for dye removal – A review, J. Environ. Manag., 90, 2313–2342 (2009) [CrossRef] [PubMed] [Google Scholar]
  3. S.R. Couto, Dye removal by immobilised fungi, Biotech. Adv., 27, 227–235 (2009) [CrossRef] [Google Scholar]
  4. S.J. Allen, and B. Koumanova, Decolourisation of water/wastewater using adsorption (review), J. University Chem. Technol. Metallurgy, 40(3), 175–192 (2005) [Google Scholar]
  5. K.S. Bharathi and S.T. Ramesh, Removal of dyes using agricultural waste as low-cost adsorbents: a review, Appl. Water Sci., 3, 773–790 (2013) [CrossRef] [Google Scholar]
  6. M.A. Kamboh, A.A. Bhatti, I.B. Solangi, S.T.H. Sherazi and S. Memon, Adsorption of direct black-38 azo dye on p-tert-butylcalix[6]areneimmobilized material, Arabian J. Chem., 7, 125–131 (2014) [CrossRef] [Google Scholar]
  7. S. Lalnunhlimi and V. Krishnaswamy, Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium, Brazilian J. Microbiology, 47, 39–46 (2016) [CrossRef] [Google Scholar]
  8. S. Saiful Azhar, A. Ghaniey Liew, D. Suhardy, K. Farizul Hafiz and MD. Irfan Hatim, Dye removal form aqueous solution by using adsorption on treated sugarcane bagasse, American J. Appl. Sci., 2(11), 1499–1503 (2005) [CrossRef] [Google Scholar]
  9. A.E. Ghaly, R. Ananthashankar, M. Alhattab and V.V. Ramakrishnan, Production, characterization and treatment of textile effluents: a critical review, J. Chem. Eng. Process. Technol., 5, 1–18 (2014) [Google Scholar]
  10. A. Rehorek and A. Plum, Characterization of sulfonated azo dyes and aromatic amines by pyrolysis gas chromatography/mass spectrometry, Anal. Bioanal. Chem., 388, 1653–1662 (2007) [CrossRef] [Google Scholar]
  11. A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem. In Press, (2014) [Google Scholar]
  12. B. Noroozi, G.A. Sorial, H. Bahrami and M. Arami, Adsorption of binary mixtures of cationic dyes, Dyes Pigm., 76, 784–791 (2008) [CrossRef] [Google Scholar]
  13. W. Lemlikchi, N. Drouiche, N. Belaicha, N. Oubagha, B. Baaziz and M.O. Mecherri, Kinetic study of the adsorption of textile dyes on synthetic hydroxyapatite in aqueous solution, J. Ind. Eng. Chem., 32, 233–237 (2015) [CrossRef] [Google Scholar]
  14. D. Pathania, A. Sharma and Z. Siddiqi, Removal of congo red dye from aqueous system using Pheonix dactylifera seeds, J. Molecular Liquids 219, 359–367 (2016) [CrossRef] [Google Scholar]
  15. A.-A. Pelaez-cid, A.-M. Herrera-Gonzalez, M. Salazar-Villanueva and A. Boutista- Hernandez, Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization, J. Environ. Manag., 181, 269–278 (2016) [CrossRef] [PubMed] [Google Scholar]
  16. B. Naresh, J. Jaydip, B. Prabhat and P. Rajkumar, Recent biological technologies for textile effluent treatment, Int. Res. J. Biol. Sci., 2(6), 77–82 (2013) [Google Scholar]
  17. M.S.I. Mozumder and M.A. Islam, Development of treatment technology for dye containing industrial wastewater, J. Sci. Rec., 2(3), 567–576 (2010) [Google Scholar]
  18. N.K. Amin, Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith, Desalination, 223, 152–161 (2008) [CrossRef] [Google Scholar]
  19. P. Nigam, G. Armour, I.M. Banat, D. Singh and R. Marchant, Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues, Bioresour. Technol., 72, 219–226 (2000) [CrossRef] [Google Scholar]
  20. S.S. Ashour, Kinetic and equilibrium adsorption of methylene blue and remazol dyes onto steam-activated carbons developed from date pits, J. Saudi Chem. Society, 14, pp. 47–53 (2010) [CrossRef] [Google Scholar]
  21. V.B. Upadhye and S.S. Joshi, Advances in wastewater treatment – A review, Int. J. Chemical Sci. Applications, 3, 264–268 (2012) [Google Scholar]
  22. T.L. Silva, A. Ronix, O. Pezoti, L.S. Souza, P.K.T. Leandro, K.C. Bedin, K.K. Beltrame, A.L. Cazetta and V.C. Almeida, Mesoporous activated carbon from industrial laundry sewage sludge: adsorption studies of reactive dye remazol brilliant blue R, Chem. Eng. J., 303, 467–476 (2016) [CrossRef] [Google Scholar]
  23. G.J. Copello, A.M. Mebert, M. Raineri, M.P. Pesenti and L.E. Diaz, Removal of dyes from water usning chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method, J. Hazard. Mater., 186, 932–939 (2011) [CrossRef] [Google Scholar]
  24. S.D. Gisi, G. Lorano, M. Grassi and M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustainable Mater. Technol., 9, 10–40 (2016) [CrossRef] [Google Scholar]
  25. G. Crini, Non-conventional low-cost adsorbents for dye removl: A review, Bioresour. Technol., 97, 1061–1085 (2006) [Google Scholar]
  26. I.D. Mall, V.C. Srivastava, N.K. Agarwal and I.M. Mishra, Adsorptive removal of malachite green dye from aueous solution by bagasse fly ash and activated carbonkinetic study and equilibrium isotherm analyses, Colloids Surf. A: Physicochem. Eng. Aspects, 264, 17–28 (2005) [CrossRef] [Google Scholar]
  27. E. Clarke and R. Anliker, Organic dyes and pigments, Handb. Environ. Chem., 3, 181–215 (1980) [Google Scholar]
  28. A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review, J. Hazard. Mater., 167, 1–9 (2009) [CrossRef] [Google Scholar]
  29. K.D. Belaid, S. Kacha, M. Kameche and Z. Derriche, Adsorption kinetics of some textile dyes onto granular activated carbon, J. Environ. Chemical Eng., 1, 496–503 (2013) [CrossRef] [Google Scholar]
  30. M. Joshi, R. Bansal and R. Purwar, Colour removal from textile effluents, Indian J. Fibre Text. Res., 29, 239–259 (2004) [Google Scholar]
  31. U. Isah A., G. Abdulraheem, S. Bala, S. Muhammad and M. Abdullahi, Kinetics, equilibrium and thermodynamics studies of C.I. reactive blue 19 dye adsorption on coconut shell based activated carbon, Int. Biodeterioration Biodegradation, 102, 265–273 (2015) [CrossRef] [Google Scholar]
  32. M.A. Ahmad, N.A. Ahmad Puad and O.S. Bello, Kinetics, equilibrium and thermodynamics studies ofsynthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation, Water Resc. Ind., 6, 18–35 (2014) [CrossRef] [Google Scholar]
  33. E.R. Bandala, M.A. Pelaez, A.J. Gracia-Lopez, M.J. Salgado and G. Moeller, Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes, Chem. Eng. Process., 47, 169–176 (2008) [CrossRef] [Google Scholar]
  34. M.A. Mohd Salleh, D. K. Mahmoud, N.A. Awang Abu, W.A. Wan Abdul Karim and A. Idris, Methylene blue adsorption from aqueous solution by langsat (lansium domesticum) peel, J. Purity, Utility Reaction Environ., 1, 472–495 (2012) [Google Scholar]
  35. W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F Sun and M.F. Hsieh, Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation, Chemosphere, 45, 51–58 (2001) [CrossRef] [Google Scholar]
  36. S. Sivamani and B. Leena Grace, Removal of dyes from wastewater using adsorption – A review, Int. J. BioSci. Technol., 2, pp. 47–51 (2009) [Google Scholar]
  37. S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: A review, J. Hazard. Mater., 97, 219–243 (2003) [CrossRef] [PubMed] [Google Scholar]
  38. M. Valix, W.H. Cheung and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493–501 (2004) [CrossRef] [Google Scholar]
  39. R. Zanzi, X. Bai, P. Capdevila and E. Bjornbom, Pyrolysis of biomass in presence of steam for production of activated carbon, liquid and gaseous fuels, Proc. of 6th world congress on chemical engineering, Melbourne, Australia, 1–8 (2001) [Google Scholar]
  40. A.A. Mamun, Y.M. Ahmed, S.A. Muyibi, M.F.R. Al-Khatib, A.T. Jameel and M.A. Al-Saadi, Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate, Arabian J. Chem., 9, 532–536 (2016) [CrossRef] [Google Scholar]
  41. G.O. El-Sayed, M.M. Yehia and A.A. Asaad, Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid, Water Resc. Ind., 7-8, 66–75 (2014) [CrossRef] [Google Scholar]
  42. R.H. Hesas, A. Arami-Niya, W.M.A. Wan Daud and J.N. Sahu, Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: Application in methylene blue adsorption, BioResour., 8(2), 2950–2966 (2013) [Google Scholar]
  43. H. Saygili, F. Guzel and Y. Onal, Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption, J. Cleaner Production, 93, 84–93 (2015) [CrossRef] [Google Scholar]
  44. R.W.S. Wan Suraya, M.R. Mohd Adib and H. Rafidah, Overview of acid optimization in impregnation method for sugarcane bagasse activated carbon production, Adv. Environ. Bio., 9(12) 1–5 (2015) [Google Scholar]
  45. K. Ahmadi, M. Ghaedi and A. Ansari, Comparison of nickel doped zinc sulphide and/or palladium nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of congo red dye, Spectrochimica Acta Part A: Moecular and Biomolecular Spectroscopy, 136, 1441–1449 (2015) [CrossRef] [Google Scholar]
  46. S. Khamparia and D. Jaspal, Adsorptive removal of direct red 81 dye from aqueous solution onto Argemone Mexicana, Sustainable Environment Research (2016) [Google Scholar]
  47. H. Belayachi, B. Bestani, N. Benderdouche and M. Belhakem, The use of TiO2 immobilized into grape marc-based activated carbon for RB-5 azo dye photocatalytic degradation, Arabian J. Chem. In Press, (2015) [Google Scholar]
  48. C.X. Chen, B. Huang, T. Li and G.F. Wu, Preparation of phosphoric acid activated carbon from sugarcane bagasse by mechanochemical processing, Bioresour., 7(4), 5109–5116 (2012) [Google Scholar]
  49. N. Mohd Nor, T. Hadibarata, Z. Yusop and Z. Mat Lazim, Removal of brilliant green and procionred dyes from aqueous solution by adsorption using selected agricultural wastes, J. Teknologi (Sciences & Engineering), 74, 117–122 (2015) [Google Scholar]
  50. M.A. Yahya, Z. Al-Qodah and C.W. Zanariah Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renewable Sustainable Energy Reviews, 46, 218–235 (2015) [CrossRef] [Google Scholar]
  51. Z. Zhang, L. Moghaddam, I.M. O’Hara and W.O.S. Doherty, Congo red adsorption by ball-milled sugarcanr bagasse, Chem. Eng. J., 178, 122–128 (2011) [CrossRef] [Google Scholar]
  52. J.X. Yu, R.A. Chi, J. Guo, Y.F. Zhang, Z.G. Xu and C.Q. Xiao, Desorption and photodegradation of methylene blue from modified sugarcane bagasse surface by acid TiO2 hydrosol, Appl. Surf. Sci., 258, 4085–4090 (2012) [CrossRef] [Google Scholar]
  53. S.L. Pandharipande, Y.D. Urunkar and A. Singh, Characterization and adsorption studies of activated carbon prepared from rice husk, sugarcane bagasse and saw dust, Int. J. Adv. Eng. Technol., 3(3), 60–62 (2012) [Google Scholar]
  54. H.D.S.S. Karunarathneand B.M.W.P.K. Amarasinghe, Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse, Energy Procedia, 34, 83–90 (2013) [CrossRef] [Google Scholar]
  55. A.K. Yadav, R. Abbassi, A. Gupta and M. Dadashzadeh, Removal of floride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane, Ecological Eng., 52, 211–218 (2013) [CrossRef] [Google Scholar]
  56. S.M. Yakout and G. Sharaf El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arabian J. Chem, 9, S1155–S1162, (2016) [CrossRef] [Google Scholar]
  57. N. Dejang, O. Somprasit and S. Chindaruksa, A preparation of atctivated carbon from macadamia shell by microwave irradiation activation, Energy Procedia, 79, 727–732 (2015) [CrossRef] [Google Scholar]
  58. A. Khaled, A. El-Nemr, A. El-Sikaily and O. Abdelwahab, Removal of direct N blue 106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies, J. Hazard. Mater., 165, 100–110 (2009) [CrossRef] [Google Scholar]
  59. A.J. Ahamed and K.R. Ahamed, Preparation and characterization of activated carbon from the Prosopis juliflora plant, Asian J. Chem., 20(3), 1702–1706 (2008) [Google Scholar]
  60. A.A. Ahmad and B.H. Hameed, Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater, J. Hazard. Mater. 173, 487–493 (2010) [CrossRef] [Google Scholar]
  61. S.M. Lamine, C. Ridha, H.M. Mahfoud, C. Mouad, B. Lotfi and A.H. Al-Dujaili, Chemical activation of an activated carbon prepared from coffee residue, Energy Procedia 50, 393–400 (2014) [CrossRef] [Google Scholar]
  62. N. Arena, J. Lee and R. Clift, Life cycle assessment of activated carbon production from coconut shells, J. Cleaner Production 125, 68–77 (2016) [CrossRef] [Google Scholar]
  63. K.A.G. Gusmao, L.V.A. Gurgel, T.M.S. Melo and L.F. Gil, Application of succinylated sugarcane bagasse as adsorbents to remove methylene blue and gentian violet from aqueous solutions – kinetic and equilibrium studies, Dyes Pigm., 92, 967–974 (2012) [CrossRef] [Google Scholar]
  64. Y.S. Ho, W.T. Chiu and C.C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresour. Technol., 96, 1285–1291 (2005) [CrossRef] [Google Scholar]
  65. Z. Mat Lazim, N.S. Zulkifli, T. Hadibarata and Z. Yusop, Removal of cresol red and reactive black 5 dyes by using spent tea leaves and sugarcane bagasse powder, J. Teknologi (Sciences & Engineering), 74, 147–151 (2015) [Google Scholar]
  66. E. Kacan, Optimum BET surface ares for activated carbon produced from textile sewage sludges and its application as dye removal, J. Environ. Manag., 166, 116–123 (2016) [CrossRef] [Google Scholar]
  67. E. Kacan and C. Kutahyali, Adsroption of strontium from aqueous solution using activated carbon produced from textile sewage sludges, J. Anal. Appl. Pyrolysis, 97, 149–157 (2012) [CrossRef] [Google Scholar]
  68. I. Ould Brahim, M. Belmedani, A. Belgacem, H. Hadoun and Z. Sadaoui, Discoloration of azo dye solutions by adsorption on activated carbon prepared from the cryogenic grinding of used tires, Chem. Eng. Transactions, 38, 121–126 (2014) [Google Scholar]
  69. Y. Gao, S. Xu, Q. Y. Y. Wu and B. Gao, Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater, J. Taiwan Institute Chem. Engineers, 61, 327–335 (2016) [CrossRef] [Google Scholar]
  70. G. Bayramoglu and M.Y. Arica, Biosorption of benzidine based textile dyes ‘Direct Blue 1 and Direct Red 128” using native and heat-treated biomass of Trametes versicolor, J. Hazard. Mater., 143, 135–143 (2007) [CrossRef] [Google Scholar]
  71. N. Das and D. Charumathi, Remediation of synthetic dyes from wastewater using yeast – An overview, Indian J. Biotech., 11, 369–380 (2012) [Google Scholar]
  72. M.S. Miao, Q. Liu, L. Shu, Z. Wang, Y.Z. Liu and Q. Kong, Removal of cephalexin from effluent by activated carbon prepared from alligator weed: kinetics, isotherms and thermodynamic analyses, Process Safety and Environmental Protection (2016) [Google Scholar]
  73. H. Tahir, M. Sultan, N. Akhtar, U. Hameed and T. Abid, Application of natural and modified sugarcane bagasse for the removal of dye from aqueous solution, J. Saudi Chem Society (2012) [Google Scholar]
  74. A. Wasti and M.A. Awan, J. Assoc. Arab Uni. Basic Appl. Sci., 20, 26–31 (2016) [Google Scholar]
  75. L. L. Matovic, N.S. Vukelic, U.D. Jovanovic, K.R. Kumric, J.B. Krstic, B.M. Babic and A.B. Dukic, Mechnochemically improved surface properties of activated carbon cloth for the removal of As(V) from aqueous solutions, Arabian J. Chem (2016) [Google Scholar]
  76. M.I. Sabela, K. Kunene, S. Kanchi, N.M. Xhakaza, A. Bathinapatla, P. Mdluli, D. Sharma and K. Bisetty, Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study, Arabian J. Chem. (2016) [Google Scholar]
  77. B. Heibati, S. Rodriguez-Couto, M.A. Al-Ghouti, M. Asif, I. Tyagi, S. Agarwal and V.K. Gupta, Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods, J. Molecular Liquid, 208, 99–105 (2015) [CrossRef] [Google Scholar]
  78. D.A. Giannakoudakis, G.Z. Kyzas, A. Avranas and N.K. Lazaridis, Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons, J. Molecular Liquids, 213, 381–389 (2016) [CrossRef] [Google Scholar]
  79. H. Cherifi, B. Fatiha and H. Salah, Kinetic studies on the adsorption of the methylene blue onto vegetal fiber activated carbons, Appl. Surf. Sci., 282, 52–59 (2013) [CrossRef] [Google Scholar]
  80. R. Hazzaa and M. Hussein, Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones, Environ. Technol. Innovation, 4, 36–51 (2015) [CrossRef] [Google Scholar]
  81. A.A. Adeyemo, I.O. Adeoye and O.S. Bello, Adsorption of dyes using different types of clay: a review, Appl. Water Sci. (2015) [Google Scholar]
  82. M.A. Mohd Salleh, D.K. Mahmoud, W.A. Wan Abdul Karim and A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280, 1–13 (2011) [CrossRef] [Google Scholar]
  83. Y.C. Sharma and S. Uma, Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon, J. Chem. Eng. Data, 55, 435–439 (2010) [CrossRef] [Google Scholar]
  84. U.J. Etim, S.A. Umoren and U.M. Eduok, Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution, J. Saudi Chem. Society (2012) [Google Scholar]
  85. E. Yilmaz, S. Memon and M. Yilmaz, Removal of direct azo dyes and aromatic amines from aqueous solution using two β-cyclodecxtrin-based polymers, J. Hazard. Mater., 174, 592–597 (2010) [CrossRef] [Google Scholar]
  86. Y. Yasin, M.Z. Hussein and F. Ahmad, Adsorption of methylene blue onto treated activated carbon, Malaysian J. Anal. Sci. 11(11), 400–406 (2007) [Google Scholar]
  87. Z. Nadzirah, H. Nor Haslina and M.R. Mohd Adib, Studies on the preparation of activated carbon sugarcane bagasse on removal of chemical oxygen demand, alkalinity and oil and grease of car wash wastewater, Adv. Environ. Biology, 9(12), 15–21 (2015) [Google Scholar]
  88. K.A. Adegoke and O.S. Bello, Dye sequestration using agricultural wastes as adsorbents, Water Resour. Ind., 12, 8–24 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.