Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 04007
Number of page(s) 11
Section Urban Hydrology and Hydraulic Research
DOI https://doi.org/10.1051/matecconf/201710304007
Published online 05 April 2017
  1. J. Schubert, Hydraulic aspects of riverbank filtration-field studies. Journal of Hydrology, 266, 145–161, (2000) [CrossRef] [Google Scholar]
  2. R.A. Sheets, R.A. Darner and B.L. Whitteberry, Lag times of bank filtration at a well field, Cincinnati, OH, USA. J. of Hydrology, 266, 162–174, (2002) [CrossRef] [Google Scholar]
  3. P.J. Dillon, M. Miller, H. Fallowfield and J. Hutson, The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers. J. Hydrology, 266, 209–221, (2002) [CrossRef] [Google Scholar]
  4. C. Ray, G. Melin and R.B. Linsky, Riverbank Filtration Improving Source-Water Quality. Kluwer Academic Publishers, Dordrecht. (2002) [Google Scholar]
  5. J.Z. Wang, S.A. Hubbs and R. Song, Evaluation of Riverbank Filtration as a Drinking Water Treatment Process. AWWA Research Foundation and American Water Works Association, USA, (2002) [Google Scholar]
  6. B. Wett, H. Jarosch and K. Ingerle, Flood induced infiltration affecting a bank filtrate well at the River Enns, Austria. J. of Hydrology, 266, 222–234, (2002) [CrossRef] [Google Scholar]
  7. M.K.N. Shamsuddin, W.N.A. Sulaiman and S. Suratman, Hydrogeol J., 22, 543. (2014) [CrossRef] [Google Scholar]
  8. Nourani V and Mano A.. Semi-distributed flood runoff model at the sub continental scale for southwestern Iran. Hydrological Processes, 21, 3173–3180, (2007) [CrossRef] [Google Scholar]
  9. E.A. Coppola, C.F. McLane, M.M. Poulton, Szidarovszky F. and Magelky R.D.. Predicting conductance due to upconing using neural networks, Ground Water 43: 827–836, (2005a) [CrossRef] [Google Scholar]
  10. Lallahem S., Mania J., Hani A. and Najjar Y. On the use of neural networks to evaluate groundwater levels in fractured media, J. of Hydrology, 307, 92–111, (2005) [CrossRef] [Google Scholar]
  11. Coppola E.A., Rana A.J., Poulton M. M., Szidarovszky F. and Uhl V.W.. A neural network model for predicting aquifer water level elevations. Ground Water, 43, 231–241, (2005b) [CrossRef] [Google Scholar]
  12. Tayfur G., Swiatek D., Wita A. and Singh V.P.. Case study: finite element method and artificial neural network models for flow through Jeziorsko earth dam in Poland. J. of Hydraulic Engineering, 131, 431–440, (2005) [CrossRef] [Google Scholar]
  13. Gobindraju R.S. and Ramachandra Rao. A., Artificial neural network in hydrology. Kluwer, Dordrecht (2000) [Google Scholar]
  14. Coulibaly P, Anctil F., Aravena R., Bobee B., Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37(4), 885–896, (2001) [CrossRef] [Google Scholar]
  15. Coulibaly P., Anctil F. and Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. of Hydrology, 230, 244–257, (2000) [CrossRef] [Google Scholar]
  16. Fausett L, Fundamentals of neural networks. Prentice Hall, Englewood Cliffs. . (1994) [Google Scholar]
  17. Haykin S. Neural networks, a comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliffs. (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.