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Abstract.Groundwater tables forecasting during implemented river bank 
infiltration (RBI) method is important to identify adequate storage of 
groundwater aquifer for water supply purposes. This study illustrates the 
development and application of artificial neural networks (ANNs) to 
predict groundwater tables in two vertical wells located in confined aquifer 
adjacent to the Langat River. ANN model was used in this study is based 
on the long period forecasting of daily groundwater tables. ANN models 
were carried out to predict groundwater tables for 1 day ahead at two 
different geological materials. The input to the ANN models consider of 
daily rainfall, river stage, water level, stream flow rate, temperature and 
groundwater level. Two different type of ANNs structure were used to 
predict the fluctuation of groundwater tables and compared the best 
forecasting values. The performance of different models structure of the 
ANN is used to identify the fluctuation of the groundwater table and 
provide acceptable predictions. Dynamics prediction and time series of the 
system can be implemented in two possible ways of modelling. The 
coefficient correlation (R), Mean Square Error (MSE), Root Mean Square 
Error (RMSE) and coefficient determination (R2) were chosen as the 
selection criteria of the best model. The statistical values for DW1 are 
0.8649, 0.0356, 0.01, and 0.748 respectively. While for DW2 the statistical 
values are 0.7392, 0.0781, 0.0139, and 0.546 respectively.  Based on these 
results, it clearly shows that accurate predictions can be achieved with time 
series 1-day ahead of forecasting groundwater table and the interaction 
between river and aquifer can be examine. The findings of the study can be 
used to assist policy marker to manage groundwater resources by using 
RBI method. 
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1 Introduction 
River Bank Infiltration (RBI) is a natural filter process to improve the drinking water 
quality obtained from surface water flow through aquifer and mixture with groundwater. 
Surface waters are infiltrated through the aquifer media in the pumping wells during 
pumping activities and subsequently influence river and groundwater level [1-7] stated that 
river and aquifer interactions are exist when waters from vertical and horizontal wells that 
are located in alluvial adjacent to rivers/lakes are pumped. It must be managed in an 
integrated way to provide efficient water supplies and also concerns over the conservation 
of the natural environment. Changing of river water levels and groundwater level will effect 
flow and contaminant transport through infiltration in aquifer media [1]. The dynamic 
fluctuation of the river water levels during pumping activities does not only influenced by 
soil sediments clogging of the riverbed but also other factors such as climate, 
hydrogeological properties and pumping rates  [5-6]. Therefore, groundwater tables 
monitoring is essential to be conducted for understanding river–aquifer interactions. 
Groundwater aquifer located closed to river have direct influence on river water level. At 
distances more than a few hundred meters from the river, the groundwater table depth is 
generally several meters higher than the river water level and subsequently does not effect 
to river water levels. In addition, groundwater tables are also not affected immediately by 
river water depth increase due to very low groundwater velocity. On the other hand, the 
other factors such as precipitation and stream flow can influence quickly the river water 
depth.  

Network design and monitoring of groundwater tables depends on hydrogeological 
conditions and available logistical resources. Although mathematical and conceptual 
models are the main tools for representing hydrological variables and understanding the 
physical processes in a system but it has practical limitations [8]. When the data is not 
sufficient and accurate prediction is required, artificial neural network (ANN) models can 
be a good option [8]. The ability of ANNs to identify the relationship of hydrological 
variables patterns makes ANNs sufficiently to solve complex hydrologic problems [9]. 
Recently, ANNs have been successfully applied for identifying the temporal data to 
calculate groundwater level [10].[11-15] has developed an ANN model for hydrology and 
hydrogeology. 

The aim of this study is to look of the applicability of ANNs in forecasting groundwater 
tables in a site at Jenderam Hilir, Selangor, Malaysia. The Jenderam Hilir is where a pilot 
project to develop a better understanding of sustainable water resources, and introduce RBI 
in Malaysia is located. This site was chosen due to the high water demand in the area and 
groundwater is seen as one of the source with very high potential to be developed as 
supplementary sources to meet the high public water supply demand. The applicability of 
the methodology is demonstrated when using ANN training algorithms namely Lavenberg-
Marquardt (LM) algorithm for predicting groundwater tables in a Jenderam Hilir located in 
the tropical humid countries. The major focus of the current study is to investigate the 
potential of ANN approach in groundwater modeling focus on water level fluctuation and 
to predict the relationship between river and aquifer of the study area.  

2 Materials and methods 

2.1 Study area 

The study area is located in a flat area of Langat River Basin at the confluence of Semenyih 
Rivers, Langat Rivers and a small Jenderam Hilir River flow to Langat River in the area. 

    
 

DOI: 10.1051/, 04007 (2017) 71030MATEC Web of Conferences matecconf/201103

ISCEE 2016 

4007

2



These two rivers are the main source of raw water for Selangor state. This area is a former 
tin mining area in which there are three major ponds (ponds A, B and C) which are 
interconnected (Fig. 1). These three ponds function as storage to increase the capacity of 
raw water at the water intake. The study area is bounded by the hilly areas in the north and 
east, and by the sea in the southwest. The maximum elevation is 297 m and the minimum is 
7.981 m, above mean sea level. The exact location is between latitude 20 53’ 28.56” N and 
20 53’ 39.75” N, and longitude 1010 42’ 03.78” E and 1010 44’ 14.58”E, covering an area of 
10km2. The daily average temperatures vary from 27-300C. This area is experiencing two 
monsoon periods; Northeast monsoon from October to January (wet season) and the 
Southwest monsoon from May to September (dry season). The annual precipitation in 2015 
is 2,013 mm and 70-80% of annual precipitation is concentrated in November and 
December. The mean stream flow is 47.13 m3/s and the highest river water level is about 
5.64 m. The daily average of rainfall, stream flow, temperature, river water level were 
obtained from the Drainage Irrigation Department, Malaysia (DID) and groundwater levels 
were measured from the two pumping test wells, DW1 and DW2. The data (rainfall, stream 
flow, temperature, river water level, groundwater level) used for this study are from 
February 2015 to March 2016. 

2.2 Design of ANN, Training Algorithms and Feed forward neural network 
(FNN) 

A ANN model is characterised by its architecture that represents the pattern of connection 
between nodes, its method of determining the connection weights and the activation 
function [16] and will be used to reproduce groundwater fluctuations for long periods using 
the observed time series data within twelve months of monitoring period (February 2015 to 
March 2016). In order to perform the system identification, the neural model is first trained 
to perform 1-day a-head predictions of the groundwater table using previously observed 
groundwater level. Once this autoregressive model has been developed, simulations were 
carried out by feeding back its output as the simulation times increases. In this study feed 
forward neural network architecture has been used and coupled with ANN training 
algorithms and Levenberg–Marquardt (LM) algorithm. These algorithms have been used to 
identify a suitable procedure which performs to predict daily groundwater levels over the 
study area. Feed forward neural networks architecture and the corresponding learning 
algorithm can be viewed as a generalisation of the popular least-mean-square (LMS) 
algorithm [17]. A multilayer perceptron network consists of an input layer, one or more 
hidden layers of computation nodes, and an output layer. Fig. 2 shows a typical feed 
forward network with one hidden layer consisting of three nodes, four input neurons and 
one output. The input signal propagates through the network in a forward direction, layer 
by layer. The various parameters, which affect the performance of network, are number of 
hidden nodes, number of hidden layers, learning rate and momentum factor. The ANN 
architecture consist of an input layer with three nodes, a hidden layer with varying nodes 
and one output layer with single node, thus leading to a multi input single output network. 
In the present study, the 406 input nodes represent initial groundwater levels at the two 
sites, daily rainfall, average daily river stage, average daily stream flow and daily 
temperature (Fig. 3). The two output nodes represent groundwater levels at the two sites in 
the next time step (i.e., 1 day a head). The input data is the groundwater level during time 1 
day ahead, ‘t-4’, ‘t-3’, ’t-2’, ‘t-1’ and ‘t’ and output data is groundwater level during time 
‘t’. The structure of the neural network was determined by trial and error. The optimal 
number of nodes in the hidden layer and the stopping criteria were optimised by trial and 
error for obtaining accurate output. The activation function of the hidden layer and output 
layer was set as log-sigmoid transfer function as this proved by trial and error to be the best 
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among a set of other options. In this study, supervised type of learning with a batch mode of 
data feeding was used in ANN modelling by available data. The data length of 406 data sets 
has been dividing into 70% for training and 30% for testing. The entire ANN modelling 
was performed by using Neural Works Predict software and EXCEL.  

 
Fig. 1. Location of study area. a. Location of Selangor (box) within the Peninsular Malaysia. b. 
Location of Jenderam Hilir (shaded) in Selangor. c. Details of the study area including the locations 
of the Langat River, Semenyih River, monitoring wells and pumping wells. 

2.2.1 Dynamic and Time series prediction 

The temperature and groundwater level at time t at the DW1 and DW2, is a function of the 
past groundwater level at real time, the rainfall, stream flow and river water level from the 
Dengkil station. The lag is still at one day. In the time series prediction, time series are a 
sequence of number where in this case they are a sequence of groundwater level form the 
DW1 and DW2 in daily series or at time, (t) day). The groundwater level at time t, is a 
function of the past groundwater level at time t-1, t-2,t-3 and t-4 as shown below; 

Y= f[ y (t1), y(t-2), y(t-3), (y(t-4)] (1) 
           
Where y(t) is the models prediction of groundwater level form in the BI site at time t, y(t-
1), y-2), y-3) and y(t-4). 
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2.2.2 Evaluation of ANN efficiency 

The predictive performance of ANN are measured by four efficiency terms; the correlation 
coefficient (R); the mean error (ME), i.e the systematic difference between the predicted 
and measured values; the mean square error (MSE); and the root mean square error 
(RMSE). The ANN responses are more precise if R, MSE, RMSE, and ME are found to be 
close to 1, 0, 0 and 0, respectively. 

Feed-forward direction  → 

GW level at time (t-4) ---� 

GW level at time (t-3) ---�       

 GWL (t) 

GW level at time (t-2) ---� 

GW level at time (t-1) ---� 

 

Rainfall 

Stream flow   GWL (t) 

River Stage 

Temperature 

 

Fig. 2. Typical feed forward neural network of the study 

2.2.3 Correlation Coefficient (R) 

The correlation coefficient is a commonly used statistical parameter and provides 
information on the strength of linear relationship between the observed and predicted by the 
compute value. The value of R close to 1.0 indicates good model performance and can be 
calculated using equation below: 
 

R = 
∑ (����� �����)	�
��� ��
��
����

∑ (����� �����)� ∑ 	�
��� ��
��
���������
 (2) 

 
Where, Xobs= observed groundwater x ̂ obs observed levels=mean of Xobs, Xpre=predicted 
groundwater level, Xpre-= mean of Xpre and n =the number of data set used for evaluation. 

2.2.4 Mean square Error (MSE) and Root Mean Square Error (RMSE) 

For every data point, take the difference of the corresponding estimated values, and square 
the values. Then add up all those values for all data points, and divide by the number of 
points. The squaring is done so negative values do not cancel positive values. Smaller MSE 
indicates better prediction of the data. The MSE has the units squared of the parameter 
estimated. 

Input Parameters (i) Hidden Layer (j) Output Parameters (k) 
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MSE =  �

� ∑ (���� − ����)� ���
�
� ∑ (���� − ����)����  (3) 

        
It is probably the most easily interpreted statistic, since it has the same units as the 
parameter estimated. The RMSE is thus the difference, on average, of an observed data and 
the estimated data. 
 

RMSE=�∑ 	�!����
��
�����
�  (4) 

   
Different neural networks architectures were developed in order to establish a relationship 
between the input and output. All the networks were of the feed forward type. The network 
architectures were trained by varying the number of hidden layer and then by varying 
number of neurons in each hidden layer. 

2.3 Coefficient Determination (R2) and Residual error (RE) 

The coefficient of determination R2 (or sometimes r2) is another measure of how well the 
least squares equation performs as a predictor of y. 
 
ŷ= b0 + b1x   (5) 

     
The R2,is useful because it gives the proportion of the variance (fluctuation) of one variable 
that is predictable from the other variable. It is a measure that allows us to determine how 
certain one can be in making predictions from a graph. The higher the R2, the more useful 
of the model, R2 takes on values between 0 and 1. The residual error in the results is given 
by: 
 
Ei = yobs – ŷpred (6) 
         
Where yobs is the observed and ŷpre the predicted groundwater level. The percentage error of 
a variable is given by: 
 

"# = $��� − $����
$���

 � 100% 

 
(7) 

3 Results and discussion 

In the present study, the ANN model was designed to predict groundwater levels in two test 
wells with 1 day a-head time using a set of suitable input parameters. The input parameters 
for the ANN model were decided by considering the parameters potentially to affecting the 
groundwater level. A cross correlation analysis between the water levels in the test wells at 
various lags suggested that Lag 1 correlation is highly significant in the water level time 
series in all the two test wells. To examine the effect of rainfall, river stage, surface flow 
and temperature on groundwater, daily groundwater levels were plotted (Fig. 3). It shows 
that groundwater levels are generally higher on rainy days which indicate that rainfall is a 
paramount parameter that influences groundwater levels compared to river stage (Fig. 3) 
and other temperature parameters (Fig.4). In a semi-confined aquifer, apart from rainfall, 
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surface water flow is another parameter that can influence the recharge to groundwater in 
BI sites (see Fig. 3). Therefore, daily surface water flow was also considered as one of the 
input parameters for the ANN model.The ANN models were trained with four input nodes 
for dynamic series model (Model 1) and five input nodes for time-series model (Model 2). 
The data were divided into two sets namely training and testing data. The calculated 
performance statistics for both models are shown in Table 1.Base on Table 1, the 
coefficient determination, R2 for the DW1 and DW2 for Model 1 is about  0.748 and 0.546 
and for Model 2 is 0.640 and 0.602 respectively (Fig. 4 and 5). For a perfect predictor, the 
coefficient determination should be +1 or -1. In general the definition of R tells us that 100 
R2 is the percentage of the total variation of the predicted values which is explained by,or is 
due to their relationship with actual values. This is an important measure of the relationship 
between two variables; beyond this it permits valid comparisons of the strength of several 
relationships. Based on this value, indicating that the Model 1 and 2 is good even though 
the R2 value is not really reaching 1.The correlation coefficient was also high on Model 1 
for the DW1 and DW2 which is 0.8649 and 0.7392 and also model 2 which is 0.8006 and 
0.7765 respectively. Fig.5a, positive (measure of direction) correlation or direct relationship 
indicates that a high score on the one variable is associated with a low score on the second 
variable. A negative correlation or inverse relationship indicates that a high score on one 
variable is associated with a low score on the second variable. The magnitude of the 
correlation coefficient indicates the strength of the relationship between the two variables. 
This magnitude can vary from 0.00 to 1.00. The closer the correlation coefficient is to 
either -1.00 or +1.00 the stronger the relationship. The stronger relationship between two 
variables is related produced the better prediction. This phenomenon can be seen in Fig. 4 
and 5 for Model 1 and Model 2 respectively. Model 1 and 2 gives a clear view that the 
predicted and the actual process output are related which mean that the prediction output is 
quite near to the actual data which is the model 1 and 2 and it is a good correlation. As 
shown in Fig. 7 and 8, that the actual and predicted output for Model 1 and 2 is reasonably 
good and the groundwater level is always being recharged by river during the high flow 
period but during the low flow period the groundwater is recharging to the river. The 
prediction model is reasonably good in showing the relationship between river and 
groundwater. The residue analysis was also carried out in this study. The residual analysis 
is very useful in helping us to identify the performance of both models. The analysis for the 
residual is presented in Fig. 5. It can be seen that the residual for Model 1 and 2 is more 
consistent where output is near to zero even though in some samples the residual is high 
(Fig. 6 and 7). It shows that model output or prediction always near to the actual data. From 
the residual analysis, it determines that for the negative values, river gains from the aquifer 
and if river losses it shows the positive value. The statistical adequacies of the developed 
models for 1-day ahead forecasts for DW1 and DW2 test wells are summarized in Table 1. 
It is observed from Table 1, that the model performance is good and the models have 
forecasted the water levels with reasonable accuracy in terms of all statistical indices during 
calibration and validation. The correlation statistics that evaluates the linear correlation 
between the observed and the computed water table is consistent. The RMSE statistic, 
which is a measure of residual variance that shows the global goodness of fit between the 
computed and observed water levels, is very good as is evidenced by a low value (< 0.4 m) 
during both training and testing. While a 1-day ahead forecasts at higher lead time are 
required for efficient planning of RBI method or conjunctive use. A further analysis was 
performed by using the forecasted water levels at the DW1 and DW2 test wells as input to 
the models. An analysis that evaluates the input sensitivity to the model predictions was 
carried out by developing two models; one using rainfall, surface water level, temperature, 
stream flow and rainfall as input model. The results were found to be not very accurate and 
may be because the recharge time for water to reach the groundwater is quite high 
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compared to the lag period considered in the model. The results presented are mainly in the 
form of percentages with 95% confidence intervals. The lower and upper limits of 
groundwater levels with 95% confidence interval are shown in the Fig.8. This Fig. 8 shows 
there is a decline and rise of groundwater table elevations for the entire period and the 
model compares well with observations with the highest groundwater level in the early 
February 2015 and 2016. 
 

  
Fig. 3. (a) Daily groundwater level fluctuations and (b) Well hydrographs at sites DW1 and DW2 
with river stage and surface water flow hydrograph at Jenderam Hilir 

 
Fig. 4. Daily groundwater level fluctuations with groundwater temperature 

Table 1. Performance statistic for model 1 and model 2. 

 Model 1 Model 2 
 DW1  DW2 DW1  DW2 
R 0.8649 0.7392 0.8006 0.7765 
MSE 0.0356 0.0781 0.0513 0.0682 
RMSE 0.01 0.0139 0.0113 0.013 
R2 0.748 0.546 0.64 0.602 
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Fig. 5. Scatter plot for observation and predicted value for DW1 (a) and DW2 (b) in Model 1 

 
Fig. 6. Scatter plot for observation and predicted value for DW1 (a) and DW2 (b) in Model 2 

 
Fig. 7. Groundwater level prediction for DW1 (a) and DW2 (b) in a dynamics model  

 
Fig. 8. The lower and upper limits are also shown in Model  (DW1 (a) and DW2 (b)  
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4 Conclusion 
In this study, the potential of neural network computing technique for forecasting 
groundwater level was investigated by developing ANN models for a shallow aquifer in 
Jenderam Hilir, Selangor in Malaysia. The result indicates that the capability of neural 
networks models in modelling of daily groundwater level using rainfall, temperature, 
stream flow and river water level data as inputs as well as the past value of the groundwater 
level. The two modelling techniques applied show that both models can perform well. This 
can be explained by referring to the correlation coefficient analysis, coefficient 
determination and RMSE. It was noted that the contribution of past values of groundwater 
level was very important in neural networks modelling as well as the value of the rainfall, 
temperature, stream flow and river water level. This was not observed in the time series 
modelling techniques where it only use past values of the groundwater level. This was the 
main reason, both the dynamic and time series modelling techniques was performed in this 
study. Therefore the appropriate techniques to model the groundwater level in study is by 
using the values of rainfall, temperature, stream flow and river water level as well as the 
values of groundwater level. A significant advantage of this model is that is can be provide 
good predictions with limitations of groundwater table record.  

References 
[1] J. Schubert, Hydraulic aspects of riverbank filtration-field studies. Journal of 

Hydrology, 266, 145–161, (2000) 
[2] R.A. Sheets, R.A. Darner and B.L. Whitteberry, Lag times of bank filtration at a well 

field, Cincinnati, OH, USA. J. of Hydrology, 266, 162–174, (2002) 
[3] P.J. Dillon, M. Miller, H. Fallowfield and J. Hutson, The potential of riverbank 

filtration for drinking water supplies in relation to microsystin removal in brackish 
aquifers. J. Hydrology, 266, 209–221, (2002) 

[4] C. Ray, G. Melin and R.B. Linsky, Riverbank Filtration Improving Source-Water 
Quality. Kluwer Academic Publishers, Dordrecht. (2002) 

[5] J.Z. Wang, S.A. Hubbs and R. Song, Evaluation of Riverbank Filtration as a Drinking 
Water Treatment Process. AWWA Research Foundation and American Water Works 
Association, USA, (2002) 

[6] B. Wett, H. Jarosch and K. Ingerle, Flood induced infiltration affecting a bank filtrate 
well at the River Enns, Austria. J. of Hydrology, 266, 222–234, (2002) 

[7] M.K.N. Shamsuddin, W.N.A. Sulaiman and S. Suratman, Hydrogeol J., 22, 543. 
(2014) 

[8] Nourani V and Mano A.. Semi-distributed flood runoff model at the sub continental 
scale for southwestern Iran. Hydrological Processes, 21, 3173–3180, (2007) 

[9] E.A. Coppola, C.F. McLane, M.M. Poulton, Szidarovszky F. and Magelky R.D.. 
Predicting conductance due to upconing using neural networks, Ground Water 43: 
827–836, (2005a) 

[10] Lallahem S., Mania J., Hani A. and Najjar Y. On the use of neural networks to evaluate 
groundwater levels in fractured media, J. of Hydrology, 307, 92–111, (2005) 

[11] Coppola E.A., Rana A.J., Poulton M. M., Szidarovszky F. and Uhl V.W.. A neural 
network model for predicting aquifer water level elevations. Ground Water, 43, 231–
241, (2005b) 

    
 

DOI: 10.1051/, 04007 (2017) 71030MATEC Web of Conferences matecconf/201103

ISCEE 2016 

4007

10



[12] Tayfur G., Swiatek D., Wita A. and Singh V.P.. Case study: finite element method and 
artificial neural network models for flow through Jeziorsko earth dam in Poland. J. of 
Hydraulic Engineering, 131, 431–440, (2005) 

[13] Gobindraju R.S. and Ramachandra Rao. A., Artificial neural network in hydrology. 
Kluwer, Dordrecht (2000) 

[14] Coulibaly P, Anctil F., Aravena R., Bobee B., Artificial neural network modeling of 
water table depth fluctuations. Water Resources Research, 37(4), 885–896, (2001) 

[15] Coulibaly P., Anctil F. and Bobee B. Daily reservoir inflow forecasting using artificial 
neural networks with stopped training approach. J. of Hydrology, 230, 244–257, (2000) 

[16] Fausett L, Fundamentals of neural networks. Prentice Hall, Englewood Cliffs. . (1994) 
[17] Haykin S. Neural networks, a comprehensive foundation, 2nd edn. Prentice Hall, 

Englewood Cliffs. (1999). 
 
 
 
 

    
 

DOI: 10.1051/, 04007 (2017) 71030MATEC Web of Conferences matecconf/201103

ISCEE 2016 

4007

11


