Open Access
Issue
MATEC Web Conf.
Volume 100, 2017
13th Global Congress on Manufacturing and Management (GCMM 2016)
Article Number 02050
Number of page(s) 3
Section Part 2: Internet +, Big data and Flexible manufacturing
DOI https://doi.org/10.1051/matecconf/201710002050
Published online 08 March 2017
  1. J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco (2001). [Google Scholar]
  2. Y. Xin. Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy and Buildings, Vol 59 (2013),p.273–278. [CrossRef] [Google Scholar]
  3. M.H. Horng. Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Systems with Applications, Vol 38 (2011), p.14805–14811. [CrossRef] [Google Scholar]
  4. W. Peng, Image segmentation method based on firefly algorithm and maximum entropy method. Computer Engineering and Applications, Vol 12 (2014), p.115–119. [Google Scholar]
  5. H. W. Tian, F. Xie, and J. M. Ni, Computer Technology and Development 21, 22 (2011). [Google Scholar]
  6. M. Clerc and J. Kennedy, IEEE Transactions on Evolutionary Computation 6, 58 (2002). [CrossRef] [Google Scholar]
  7. Y. Liu, X. H. Wang, C. M. Xing, and S. Wang, Computer Technology and Development 21, 19 (2011). [Google Scholar]
  8. D. M. Li and H. H. Shi, A Hierarchical Load Balancing Scheduling Model Based on Rules Computer Science 30, 16 (2003). [Google Scholar]
  9. R. C. Eberchart and J. Kennedy, A new optimizer using particle swarm theory, Proceeding of the 6th International Symposium on Micromachine and Human Science, Nagoya, Japan (1995), p. 39–43. [Google Scholar]
  10. Z. H. Zhang and X. J. Zhang, A load balancing mechanism based on ant population and complex network theory in open cloud computing federation, 2010 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, China (2010), p. 240–243. [Google Scholar]
  11. J. F. Schutte, Particle swarms in sizing and global optimization, Master’s Thesis, University of Pretoria, Department of Mechanical Engineering (2002). [Google Scholar]
  12. Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, IEEE Press, Piscataway, USA (1998), p. 69–73. [Google Scholar]
  13. Y. Shi and R. C. Eberhart, Parameter selection in particle swarm optimization, Evolutionary Programming VII, edited by V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Lecture Notes in Computer Science, Springer, Berlin (1998), vol. 1447, p. 591–600. [Google Scholar]
  14. Tao, X.M, Xu, J. and Yang, L.B. An Improved Hybrid Algorithm Based on Particle Swarm Optimization and K-means Algorithm. Journal of Electronics &Information Technology. 32, 1,(2010), p.92–94. [CrossRef] [Google Scholar]
  15. Suresh, S. Sundararajan, N. Saratchandran, P. A sequential multi-category classifier using radial basis function networks, Neurocomputing 71, (2008) p.1345–1358. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.