Open Access
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
Article Number 12004
Number of page(s) 5
Section Applied Mechanics and Dynamics
Published online 09 February 2017
  1. Basaruddin K.S., Takano N., and Nakano T., Stochastic multi-scale prediction on the apparent elastic moduli of trabecular bone considering uncertainties of biological apatite (BAp) crystallite orientation and image-based modelling. Comput Methods Biomech Biomed Engin. 18, 2(2015). [CrossRef] [Google Scholar]
  2. A. Jaziri a J.R.b., Multi-scale modelling of the trabecular bone elastoplastic behaviour under compression loading. European Journal of Computational Mechanics, 21, 3–6 (2012). [Google Scholar]
  3. Hamed E., Lee Y., and Jasiuk I., Multiscale modeling of elastic properties of cortical bone. Acta Mechanica, 213, 1–2(2010). [CrossRef] [Google Scholar]
  4. Ilic S.H., Gilbert Klaus, Robert, Application of the multiscale FEM to the modeling of cancellous bone. Biomech Model Mechanobiol. 9, 1(2009). [Google Scholar]
  5. Sansalone V., Naili S., and Desceliers C., A stochastic homogenization approach to estimate bone elastic properties. Comptes Rendus Mécanique. 342, 5(2014). [Google Scholar]
  6. Shin J., et al., Finite Element Analysis of Schwarz P Surface Pore Geometries for Tissue-Engineered Scaffolds. Mathematical Problems in Engineering. 2012, 1–13(2012). [CrossRef] [Google Scholar]
  7. Hayes G.S.B.W.C., Finite Element Analysis of a Three-Dimensional Open-Celled Model for Trabecular Bone. Journal of Biomechanical Engineering,107, 3 (1985). [Google Scholar]
  8. Cui J. Z.; Shin T. M.; Wang Y. L. Two-scale analysis method for bodies with small periodic configuration. Structural Engineering and Mechanics, 7, 6(1999) [Google Scholar]
  9. Zihao Yang J.C., Nie Yufeng, Microstructural Modeling and Second-Order Two-Scale Computation for Mechanical Properties of 3D 4-Directional Braided Composites. CMC, 38, 3(2013) [Google Scholar]
  10. Schwen L.O.,Multiscale elasticity modeling of trabecular bone. 2013. [Google Scholar]
  11. Yoo D., New paradigms in hierarchical porous scaffold design for tissue engineering. Mater Sci Eng C Mater Biol Appl, 33, 3(2013). [Google Scholar]
  12. Chappard D., etal., Trabecular bone microarchitecture: a review. Morphologie. 92, 299 (2008) [CrossRef] [Google Scholar]
  13. Hamed E., et al., Multi-scale modelling of elastic moduli of trabecular bone. J R Soc Interfece, 9, 72(2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.