Open Access
Issue
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
Article Number 01009
Number of page(s) 4
Section Materials Handling Methods and Performance Analysis
DOI https://doi.org/10.1051/matecconf/20179501009
Published online 09 February 2017
  1. T.H.C. Childs, C. Hauser, M. Badrossamay, P.I. Mech, Eng. B: J. Eng. 219, 339–357, (2005).
  2. K. Osakada, M. Shiomi, Int. J. Mach. Tools Manuf. 46 1188–1193, (2006). [CrossRef]
  3. G.N. Levy, R. Schindel, J.-P. Kruth, Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Annals, 52/2: 583–609, (2003).
  4. N. Hopkinson, P. Dickens, Rapid prototyping for direct manufacture, Rapid Prototyping J., 7/4: 197–202 (2001). [CrossRef]
  5. J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals, 56/2: 730–759, (2007).
  6. J.A. Cherry, H. M. Davies, S. Mehmood, N.P. Lavery, S. G.R. Brown, J. Sienz. Int. J Adv. Manuf. Techno. 176, 869–879, (2015). [CrossRef]
  7. L. Zhou, K. Nakata, T. Tsumura. Journal of Materials Engineering and Performance 23, 3718–3726, (2014). [CrossRef]
  8. S.M. Hosseinalipour, A. Ershad-Langroudi, A.N. Hayati. Progress in Organic Coatings 67, 371–374, (2010). [CrossRef]
  9. B. Zhang, L. Dembinski, C. Coddet. Materials Science and Engineering A 584, 21–31, (2013). [CrossRef]
  10. Y. Sun, A. Moroz, K. Alrbaey. Journal of materials engineering and performance 23, 518–526, (2014). [CrossRef]
  11. V.S. Thangarasu, R . Sivasubramanian, High Speed CNC Machining of AISI 304 Stainless Steel; Optimization of Process Parameters. International Journal of Mechanical Engineering and Robotics Research, 1(9), (2012).
  12. G. Casalino, S.L. Campanelli, N. Contuzzi et al. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Optics & Laser Technology, 65: 151-158, (2015). [CrossRef]
  13. A. Simchi, Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Materials Science and Engineering: A, 428(1): 148–158, (2006). [CrossRef]
  14. D. Gu, Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Materials & Design, 30(8): 2903-2910, (2009). [CrossRef]
  15. A. Simchi, F. Petzoldt, H. Pohl, On the development of direct metal laser sintering for rapid tooling. Journal of Materials Processing Technology, 141(3): 319-328, (2003). [CrossRef]
  16. E.O. Olakanmi, Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties. Journal of Materials Processing Technology, 213(8): 1387-1405, (2013). [CrossRef]
  17. E. Sallica-Leva, A.L. Jardini, J.B. Fogagnolo, Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting. Journal of the mechanical behavior of biomedical materials, 26: 98-108, (2013). [CrossRef]
  18. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, et al. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 149(1): 616-622, (2004). [CrossRef]
  19. E. Chlebus, B. Kuźnicka, T. Kurzynowski et al. Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting. Materials Characterization, 62(5): 488-495, (2011). [CrossRef]
  20. R. Wauthle, B. Vrancken, B. Beynaerts et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Additive Manufacturing, 5: 77-84, (2015). [CrossRef]
  21. A. Riemer, S. Leuders, M. Thöne et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Engineering Fracture Mechanics, 120: 15-25, (2014). [CrossRef]
  22. C. Yan, L. Hao, A. Hussein et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Materials & Design, 55: 533-541, (2014). [CrossRef]
  23. R. Li, Y. Shi, Z. Wang et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science, 256(13): 4350–4356, (2010). [CrossRef]
  24. K. Antony, N. Arivazhagan, K. Senthilkumaran. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. Journal of Manufacturing Processes, 16(3): 345–355, (2014). [CrossRef]
  25. A. Yamamoto, R. Honma, M. Sumita. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Journal of biomedical materials research, 39(2): 331-340, (1998). [CrossRef]
  26. Y.C. Tang, S. Katsuma, S. Fujimoto et al. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Acta Biomaterialia, 2(6): 709-715, (2006). [CrossRef]
  27. R. Nishimura, A. Sulaiman, Y. Maeda. Stress corrosion cracking susceptibility of sensitized type 316 stainless steel in sulphuric acid solution. Corrosion Science, 45(2): 465-484, (2003). [CrossRef]
  28. R.A. Antunes, A.C.D. Rodas, N.B. Lima et al. Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316L austenitic stainless steel for orthopedic applications. Surface and Coatings Technology, 205(7): 2074-2081, (2010). [CrossRef]
  29. X.Z. Xin, N. Xiang, J. Chen et al. In vitro biocompatibility of Co–Cr alloy fabricated by selective laser melting or traditional casting techniques. Materials Letters, 88: 101-103, (2012). [CrossRef]
  30. D.H. Kumar, A.S. Reddy. Study of Mechanical Behavior in Austenitic Stainless Steel 316 LN Welded Joints. Int. J. Mech. Eng. Rob. Res, 2: 37–56, (2013).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.