Open Access
Issue
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
Article Number 03002
Number of page(s) 8
Section Chemical Engineering
DOI https://doi.org/10.1051/matecconf/20178703002
Published online 12 December 2016
  1. Chalaturnyk, R. and Moffatt, T. (1995). Permanent instrumentation for production optimization and reservoir management. Paper SPE 30274-MS proceedings of the SPE International Heavy Oil Symposium, Calgary, Alberta, 19-21 June. [Google Scholar]
  2. Wu, Z., Alpak, F. O. and Torres-Verdin, C. (2003). A quantitative study to assess the value of pressure data acquired with in-situ permanent sensors in complex 3D reservoir models subject to two-phase fluid flow. Paper SPE 84375-MS proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 5-8 October. [Google Scholar]
  3. Silva, M. I. and Kato, E. T. (2004). Reservoir management optimization using permanent downhole gauge data. Paper SPE 90973-MS proceedings of the SPE Annual Technical Conference and Exhibition, Houston, Texas, 26-29 September. [Google Scholar]
  4. Brinsden, M. S. (2005). A New Wireless Solution to Real Time Reservoir Surveillance. Presented at the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 12-15 March. SPE-93512-MS. [Google Scholar]
  5. Jackson, M. D., Saunders, J. H., and Addiego-Guevara, E. A. (2005). Development and Application of New Downhole Technology to Detect Water Encroachment toward Intelligent Wells. Paper SPE 97063 presented at the SPE Annual Technical Conference and Exhibition, Dallas, 9–12 October. [Google Scholar]
  6. Saunders, J. H., Jackson, M. D. and Pain, C. C. (2008). Fluid flow monitoring in oil fields using downhole measurements of electrokinetic potential, Geophysics, Vol. 73(5). [Google Scholar]
  7. Jaafar, M. Z., Vinogradov, J., and Jackson, M. D. (2009). Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity NaCl brine. Geophysical Research Letters 36: L21306. [CrossRef] [Google Scholar]
  8. Jackson, M. D., Vinogradov, J., Saunders, J. H. and Jaafar, M. Z. (2011). Laboratory Measurements and Numerical Modeling of Streaming Potential for Downhole Monitoring in Intelligent Wells, SPE 120460, September 2011 SPE Journal. [Google Scholar]
  9. Jaafar, M., Nasir, A. and Hamid, M. (2013). Point of Zero Charge for Sandstone and Carbonate Rocks by Streaming Potential. International Journal of Petroleum & Geoscience Engineering (IJPGE), 1(2): 82–90. [Google Scholar]
  10. Walker, E., Glover, P. and Ruel, J. (2014). A transient method for measuring the DC streaming potential coefficient of porous and fractured rocks. Journal of Geophysical Research: Solid Earth, 119(2): 957–970. [CrossRef] [Google Scholar]
  11. Vinogradov, J., Jaafar, M. and Jackson, M. (2010). Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B12). [Google Scholar]
  12. Esmaeili, S., Rahbar, M., Pahlavanzadeh, H. and Ayatollahi, S. (2016). Investigation of streaming potential coupling coefficients and zeta potential at low and high salinity conditions: Experimental and modeling approaches. Journal of Petroleum Science and Engineering, 145, 137–147. [CrossRef] [Google Scholar]
  13. Sadeqi-Moqadam, M., Riahi, S. and Bahramian, A. (2016). Monitoring wettability alteration of porous media by streaming potential measurements: Experimental and modeling investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Elsevier B.V. [Google Scholar]
  14. Sheng J. J. (2011). Modern chemical enhanced oil recovery: theory and practice. Elsevier; 2011. [Google Scholar]
  15. Sheng, J. J. (2013). SPE 165358, A Comprehensive Review of Alkaline-Surfactant-Polymer (ASP) Flooding, Paper SPE 165358 proceedings of the SPE Western Regional & AAPG Pacific Section Meeting, Monterey, California, USA, 19-25 April 2013. [Google Scholar]
  16. Chen, L., Zhang, G., Wang, L., Wu, W. and Ge, J. (2014). Zeta potential of limestone in a large range of salinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 450: 1–8. [CrossRef] [Google Scholar]
  17. Wurmstich, B., Morgan, E. D., Texas, A., Merkler, G., Lytton, R. L., Texas, A., and G, E. (1994). Engineering and Groundwater 3 : Case Histories II Potentials Due to Seepage : Study of a Dam, 3–5. [Google Scholar]
  18. Quincke, G. (1859). Concerning a new type of electrical current. Annalen der Physics and Chemie (Poggendorff’s Annal., Ser. 2) 107, 1–47. [Google Scholar]
  19. Helmholtz, H. (1879). Studien uber electrische grenzschichten. Ann. Phys. Chem. 7(ser.3):337–382. [CrossRef] [Google Scholar]
  20. Jackson, M., Gulamali, M., Leinov, E., Saunders, J. and Vinogradov, J. (2012). Spontaneous Potentials in Hydrocarbon Reservoirs During Waterflooding: Application to Water-Front Monitoring. SPE Journal, 17(1), 53–69. [CrossRef] [Google Scholar]
  21. Hunter, R. J. (1981). Zeta Potential in Colloid Science, Academic, New York. [Google Scholar]
  22. Sill, W. R. (1983). Self-potential modeling from primary flows, Geophysics, 48, 76–86. [Google Scholar]
  23. Marshall, D. J. and Madden, T. R. (1959). Induced polarization, a study of its causes, Geophysics, 24(4): 790–816. [CrossRef] [Google Scholar]
  24. Nourbehecht, B. (1963) Irreversible thermodynamics effect in inhomogeneous media and their applications in certain geoelectric problems, Ph.D. thesis, Mass. Inst. Of Technol., Cambridge. [Google Scholar]
  25. Luong, D. T., and Sprik, R. (2014). Examination of a Theoretical Model of Streaming Potential Coupling Coefficient, 2014. [Google Scholar]
  26. Zhang, W., Yao, J., & Sun, H. (2015). Electrokinetic coupling in single phase flow in periodically changed capillary with a very small throat size. International Journal of Heat and Mass Transfer, 84, 722–728. [CrossRef] [Google Scholar]
  27. Chilingar, G. V. Haroun, M., Shojaei, H. and Shin, S. (2014). Introduction to Electrokinectics, Electrokinetics for Petroleum and Environmental Engineers. Scrivener Publishing. [Google Scholar]
  28. Stosur, G. J., Hite, J. R., Carnahan, N. F., and Miller, K. (2003). The Alphabet Soup of IOR, EOR and AOR: Effective Communication Requires a Definition of Terms. SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia, October 20-21, 2003. [Google Scholar]
  29. Collins, A. (1977). Enhanced-Oil-Recovery Water Injections. In SPE-AIME International Symposium on Oilfield and Geothermal Chemistry. La Jolla, California. [Google Scholar]
  30. Zhang, T., Davidson. D., Bryant S. L. and Huh. C. (2010). Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery, SPE/DOE Paper 129885, to be presented at SPE Improved Oil Recovery Symp., Tulsa, OK., Apr. 26–28 [Google Scholar]
  31. Hill, D. G., Wittle J. K., Fricker, D. J., and Chilingar, G. V. (2010). Moving Goo: Direct Electric Current Oil Recovery (EEOR)—A New Approach to Enhancing Oil Production, Sacramento Petroleum Association, November 17. [Google Scholar]
  32. Austine, J., Van Batenburg, D. W., Southwick, J. G., Zarubinska, M. A., Paramanathan, S., Bouwmeester, R. C. M., Kechut, N. I., Viig, S. O., Haugen, O. B., and Brandvoll, Ø. (2015). Laboratory Evaluation of Inter-Well Partitioning Tracers for the determination of remaining oil saturation after ASP flooding. Paper SPE-174610-MS proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11-13 August 2015. [Google Scholar]
  33. Flaaten, A. K., Nguyen, Q. P., Pope, G .A and Zhang, J. (2009). A Systematic Laboratory Approach to Low-Cost, High-Performance Chemical Flooding. SPE Reservoir Evaluation & Engineering. Volume 12, Number 5. October 2009. pp. 713-723. SPE paper 113469-PA. [Google Scholar]
  34. Shen, P., Wang, J., Yuan, S., Zhong, T. and Jia, X. (2009). Study of Enhanced-Oil-Recovery Mechanism of Alkali/Surfactant/Polymer Flooding in Porous Media from Experiments. SPE Journal. Volume 14, Number 2. June 2009. pp. 237-244. SPE paper 126128-PA. [Google Scholar]
  35. Spinler, E. A. and Baldwin, B. A. (2000). Surfactant Flooding in Enhanced Oil Recovery. In Schramm, L. L. (Ed.) Surfactants Fundamentals and Applications in the Petroleum Industry. 1ed. Cambridge, Cambridge University Press. [Google Scholar]
  36. Hirasaki, G. J., Miller, C. A., Puerto, M. (2011). Recent advances in surfactant EOR. Soc Pet Eng J 2011;16:889–907. [Google Scholar]
  37. Stoll, W. M., Al Shureqi, H., Finol, J., Al-Harthy, S. A. A., Oyemade, S. and De Kruijf, A. (2011). Alkaline/surfactant/polymer flood: from the laboratory to the field. SPE Reserv Eval Eng 2011;4(6):704–712. [Google Scholar]
  38. Sorbie, K. S. (1991). Polymer-Improved Oil Recovery, CRC Press, Inc., Boca Raton, Florida. [Google Scholar]
  39. Gao, S., Li, H., Li, H. (1995). Laboratory investigation of combination of alkali/ surfactant/polymer technology for Daqing EOR. SPE Resrv Engg 10:194–197 [CrossRef] [Google Scholar]
  40. Rai, K., Mccomb, T., Rodriguez, E., Withers, R., Company, C. E. T. (2012). Development of a tool to predict technical Success of polymer flooding applications. Society of Petroleum Engineers, SPE; 2012. SPE 153878. [Google Scholar]
  41. Singhal A. (2011). Preliminary review of IETP projects using polymers. 2011. [Google Scholar]
  42. Wang, D. M., Cheng, J. C., Yang, Q. Y., Gong, W. C., Li, Q., and Chen, F. M. (2000). Viscous-elastic polymer can increase microscale displacement efficiency in cores, paper SPE 63227 presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1–4 October. [Google Scholar]
  43. Stegemeier, G. L. (1977). Mechanisms of entrapment and mobilization of oil in porous media, In Improved Oil Recovery by Surfactant and Polymer Flooding, (Shah, D.O. and Schechter, R.S., eds.), pp. 55–91, Academic Press, New York. [CrossRef] [Google Scholar]
  44. Olajire, A. A. (2014). Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy, 77, 963–982. [CrossRef] [Google Scholar]
  45. Nelson, R. C., Lawson, J. B., Thigpen, D. R., and Stegemeier, G. L. (1984). Cosurfactant-enhanced alkaline flooding. Paper SPE 12672 presented at the SPE/DOE Fourth Symposium on Enhanced Oil Recovery held in Tulsa, Oklahoma, 15–18 April. [Google Scholar]
  46. Southwick, J. G., van den Pol, E., van Rijn, C. H. T., van Batenburg, D. W., Boersma, D. M., Svec, Y., Mastan, A. A., Shahin, G. T., and Raney, K. (2014). Ammonia as alkali for ASP floods – Comparison to sodium carbonate. In SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA. SPE 169057. [Google Scholar]
  47. Liu, S., Zhang, D. L., Yan, W., Puerto, M., Hirasaki, G. J. and Miller, C. A. (2008). Favorable attributes of alkaline-surfactant-polymer flooding. Soc Pet Eng J 2008;13(1):5–16. [Google Scholar]
  48. Johnson Jr., C. E. (1976). Status of caustic and emulsion methods. JPT (January), 85–92. [CrossRef] [Google Scholar]
  49. Wang, J., Han, M., Fuseni, A. B., & Cao, D. (2015). Surfactant Adsorption in Surfactant-Polymer Flooding for Carbonate Reservoirs. SPE-172700-MS: SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 8–11 March 2015. [Google Scholar]
  50. Zhu, Y. Y., Hou, Q. F., Liu, W. D., Ma, D. S. and Liao, G. Z. (2012). Recent progress and effects analysis of ASP flooding field tests, paper SPE 151285 presented at the SPE Improved Oil Recovery Symposium, 14-18 April, Tulsa, Oklahoma. [Google Scholar]
  51. Chen, M., Raghuraman, B., Bryant, I. and Supp, M., (2006). Streaming potential applications in oil fields, SPE Annual Technical Conference and Exhibition, an Antonio, Texas, USA. [Google Scholar]
  52. Anuar, S. M. M., Jaafar, M. Z. and Sulaiman, W. R. W. (2013). Monitoring Water Alternate Gas (WAG) Process Using Streaming Potential Measurement, Paper SPE 165300 proceedings of the SPE Enhanced Oil Recovery Conference held in Kuala Lumpur, Malaysia, 2-4 July 2013. [Google Scholar]
  53. Omar, S., Jaafar, M. Z., Ismail, A. R., & Sulaiman, W. R. W. (2013). Monitoring Foam Stability in Foam Assisted Water Alternate Gas (FAWAG) Processes Using Electrokinetic Signals, Paper SPE 165312 proceedings of the SPE Enhanced Oil Recovery Conference held in Kuala Lumpur, Malaysia, 2-4 July 2013. [Google Scholar]
  54. Omar, S., Jaafar, M. Z., Ismail, A. R. and Sulaiman, W. R. W. (2014). Relationship between Foam Stability and The Generated Electrokinetic Signals during FAWAG (Foam Assisted Water Alternate Gas) Process. Journal of Applied Sciences, 14(11): 1123–1130. [CrossRef] [Google Scholar]
  55. Anuar, S. M. M., Jaafar, M. Z., Sulaiman, W. R. W. and Ismail, A. R. (2014). Correlation Study between Streaming Potential and Waterfront Progression during Water Alternate Gas (WAG) Injection. Journal of Applied Sciences, 14(17): 1959–1965. [CrossRef] [Google Scholar]
  56. Tewari, R. D., Riyadi, S., Kittrell, C., Kadir, F. A., Bakar, M. A., Othman, T. R. T. and Banu, N. (2010). Maximizing Oil Recovery through Immiscible Water Alternating Gas (IWAG) in Mature Offshore Field, SPE-133345-MS. Presented at the SPE Asia Pacific Oil & Gas Conference and Exhibition held in Brisbane, Queensland, Australia, 18–20 October. [Google Scholar]
  57. Tunio, S. Q. and Chandio, T. A. (2012). Recovery enhancement with application of FAWAG for a Malaysian field. J. Applied Sci. Eng. Technol., 4:8–10 [Google Scholar]
  58. Qingfeng, H., Youyi, Z., Yousong, L., and Rui, W. (2012). Studies on Foam Flooding EOR Technique for Daqing Reservoirs After Polymer Flooding. Paper SPE 151955 presented at the 18th SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, USA, 14-18 April. [Google Scholar]
  59. Kostoglou, M., Georgiou, M., and Karapantsios, T. D. (2010). A New Device for Accessing Film Stability in Foams: Experiment and Theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382(2011), 64–73. [CrossRef] [Google Scholar]
  60. Abdullah, Z. Z., Zain, Z. M., Anua, N. A., and Singhal, A. (2011). Application of Radiactive and Chemical Tracers for Offshore WAG Pilot Project. Paper SPE 143391 presented at the SPE Enhanced Oil Recovery Conference held in Kuala Lumpur, Malaysia, 19-21 July. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.