Open Access
Issue
MATEC Web Conf.
Volume 83, 2016
CSNDD 2016 - International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 05008
Number of page(s) 4
Section Nonlinear dynamics of flexible structures
DOI https://doi.org/10.1051/matecconf/20168305008
Published online 16 November 2016
  1. H. Bilharz. Bemerkung zu einem Satze von Hurwitz. Z. angew. Math. Mech., 24(2):77–82, 1944. [CrossRef] [Google Scholar]
  2. N. Boguliubov and Y. A. Mitropolskij. Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen. Akademie Verlag Berlin, 1965. [Google Scholar]
  3. V. Bolotin. The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco, California, 1964. [Google Scholar]
  4. T. Breunung. Semianalytische Berechnungen von Stabilitätskarten eines gleitgelagerten Rotorsystems mit Parametererregung. Masterthesis, Technische Universität Darmstadt, 2016. [Google Scholar]
  5. F. Dohnal. Suppressing self-excited vibrations by synchronous and time-periodic stiffness and damping variation. Journal of Sound and Vibration, 306:136–152, 2007. [CrossRef] [Google Scholar]
  6. F. Dohnal. Damping by Parametric Stiffness Excitation: Resonance and Anti-Resonance. Journal of Vibration and Control, 14(5):669–688, 2008. [CrossRef] [Google Scholar]
  7. F. Dohnal. A contribution to the mitigation of transient vibrations, Parametric anti-resonance: theory, experiment and interpretation. habilitation thesis, Technische Universität Darmstadt, 2012. [Google Scholar]
  8. F. Dohnal, B. Pfau, and A. Chasalevris. Analytical predictions of a flexible rotor in journal bearings with adjustable geometry to suppress bearing induced instabilities. In Proceedings of the 13th Int. Conf. on Dynamical Systems - Theory and Applications, Łódź, Poland, December 2015. [Google Scholar]
  9. F. Dohnal and F. Verhulst. Averaging in vibration suppression by parametric stiffness excitation. Nonlinear Dynamics, 54:231–248, 2008. [CrossRef] [Google Scholar]
  10. R. Gasch, K. Knothe, and R. Liebich. Strukturdynamik - Diskrete Systeme und Kontinua. Springer, 2012. [Google Scholar]
  11. B. Pfau, M. Rieken, and R. Markert. Numerische Untersuchungen eines verstellbaren Gleitlagers zur Unterdrückung von Instabilitäten mittels Parameter-Antiresonanzen. In First IFToMM D-A-CH Conference, Dortmund, Germany, 2015. [Google Scholar]
  12. J. A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in Nonlinear Dynamical Systems. Spr., 2007. [Google Scholar]
  13. G. Schmidt. Parametererregte Schwingungen. Deutscher Verlag der Wissenschaften, Berlin, 1975. [Google Scholar]
  14. A. Tondl. On the interaction between self-excited and parametric vibrations. Monographs and Memoranda No. 25, National Research Institute for Machine Design, Běchovice, 1978. [Google Scholar]
  15. A. Tondl. To the Problem of Quenching Self-Excited Vibrations. Acta Techn. CSAV, 43:109–116, 1998. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.