Open Access
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
Article Number 11004
Number of page(s) 4
Section Biological and Biomedical
Published online 03 October 2016
  1. R. Barlett, Sports Biomechanics: Reducing Injury and Improving Performance, Routledge, London (1999). [CrossRef] [Google Scholar]
  2. K.J. Koester, J.W. Ager, R.O. Ritchie. The True Toughness of Human Cortical Bone Measured with Realistically Short Cracks. Nat. Mater. 7 (2008), 672–677. [CrossRef] [Google Scholar]
  3. H. Peterlik, P. Roschger, K. Klaushofer and P. Fratzl. From Brittle to Ductile Fracture of Bone. Nat. Mater. 5, pp. 52–55, (2006). [CrossRef] [Google Scholar]
  4. A. Carriero, E. A. Zimmermann, S. J. Shefelbine and R. O. Ritchie. A Methodology for The Investigation of Toughness and Crack Propagation in Mouse Bone. Journal of the Mechanical Behavior of Biomedical Materials 39, pp. 38–47, (2014). [CrossRef] [Google Scholar]
  5. S. Li, A.A Wahab, V.V Silberschmidt. Analysis of Fracture Process In Cortical Bone Tissue. Engineering Fracture Mechanics 110, pp. 448–458, (2013). [CrossRef] [Google Scholar]
  6. British Standards Institue. Fracture Mechanics Toughness Tests. Method for Determination of KIC, Critical CTOD and Critical J Values of Metallic Materials. BS 7448-1, (1999). [Google Scholar]
  7. N. Dourado, F.A.M. Pereira, M.F.S.F. Moura, J.J.L. Morais and M.I.R Dias. Bone Fracture Characterization Using the End Notched Flexure Test. Materials Science and Engineering C 33, pp. 405–410, (2013). [CrossRef] [Google Scholar]
  8. F.G.A. Silva, M.F.S.F de Moura, N. Dourado, J. Xavier, F.A.M. Pereira, J.J.L Morais and M.I.R. Dias. Mixed-Mode I+II Fracture Characterization of Human Cortical Bone Using The Single Leg Bending Test. Journal of The Mechanical Behavior of Biomedical Materials 54, pp. 72–81, (2016). [CrossRef] [Google Scholar]
  9. T. L. Norman, D. Vashishth and D. B. Burr. Fracture Toughness of Human Bone Under Tension. J. Biomechanics, 28, pp. 309–32 (1995). [CrossRef] [Google Scholar]
  10. G. H. V. Lenthe, R. Voide, S. K. Boyd and R. Muller. Tissue Modulus Calculated From Beam Theory is Biased by Bone Size and Geometry: Implications for The Use of Three–Point Bending Tests to Determine Bone Tissue Modulus. Bone, 43, pp. 717–723, (2008). [CrossRef] [Google Scholar]
  11. H. Ridha and P. J. Thurner. Finite Element Prediction with Experimental Validation of Damage Distribution in Single Trabaculea During Three-Point Bending Tests. Journal of The Mechanical Behavior of Biomedical Materials 27, pp. 94–106, (2013). [CrossRef] [Google Scholar]
  12. F. Libonati and L. Vergani. Bone Toughness and Crack Propagation: An Experimental Study. Procedia Engineering 74, pp. 464–467, (2014). [CrossRef] [Google Scholar]
  13. A. Carriero, J.L. Bruse, K.J. Oldknow, J.L. Millan, C. Farquharson and S.J. Shefelbine. Reference Point Indentation Is Not Indicative of Whole Mouse Bone Measures of Stress Intensity Fracture Toughness. Bone 69, pp. 174–179, (2014). [CrossRef] [Google Scholar]
  14. O.L. Katsamenis, T. Jenkins and P.J. Thurner. Toughness and Damage Susceptibility In Human Cortical Bone Is Proportional to Mechanial Inhomogeneity At The Osteonal-Level. Bone, 76, pp. 158–168, (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.