Open Access
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
Article Number 04006
Number of page(s) 5
Section Computer Aided Technology
Published online 03 October 2016
  1. V.B. Kudryashov, V.S. Lapshov, V.P. Noskov, I.V. Rubtsov. Problems of robotization for military ground technics, Izvestiya SFedU. Engineering Sciences, 3/152: 42–57, (2014). [Google Scholar]
  2. A.K. Kovalchuk, D.B. Kulakov, S.E. Semenov, V.V. Yarots, A.A. Vereikin, B.B. Kulakov, L.A. Karginov. Method for designing spatial tree-like actuators of walking robots, Engineering bulletin of the Bauman MSTU, 11: 6–10, (2014). [Google Scholar]
  3. V.V. Lapshin. About the walking motion stability, Science and Education of the Bauman MTSU, 6: 319–335, (2014). [Google Scholar]
  4. S. Warnakulasooriyaa, A. Bagheria, N. Sherburnb, M. Shanmugavel. Bipedal Walking Robot – A developmental design, Procedia engineering, 41: 1016–1021, (2012). [CrossRef] [Google Scholar]
  5. S.C. Lima, G.H. Yeapa. The Locomotion of Bipedal Walking Robot with Six Degree of Freedom, Procedia Engineering, 41: 8–14, (2012). [CrossRef] [Google Scholar]
  6. YooJ.K., LeeB.J., Kim. J.H. Recent Progress and Development of the Humanoid Robot Hansaram, Robotics and Autonomous Systems, 57: 973–981, (2009). [CrossRef] [Google Scholar]
  7. T. Buschmann, S. Lohmeier, H. Ulbrich. Humanoid Robot Lola: Design and Walking Control // Journal of Physiology, 103: 141–148, (2009). [Google Scholar]
  8. X. Yua, C. Fub, K. Chen. Modeling and Control of a Single-legged Robot, Procedia Engineering, 24: 788–792, (2011). [CrossRef] [Google Scholar]
  9. H. Rostro-Gonzalez, P.A. Cerna-Garcia, G. Trejo-Caballero, C.H. Garcia-Capulin, M.A. Ibarra-Manzano, J.G. Avina-Cervantes, C. Torres-Huitzil A CPG System Based on Spiking Neurons for Hexapod Robot Locomotion, Neurocomputing, 170: 47–54, (2015). [CrossRef] [Google Scholar]
  10. P.S. Pan, C.M. Wu. Design of a Hexapod Robot with a Servo Control and a Man-Machine Interface, Robotics and Computer-Integrated manufacturing, 28: 351–358, (2012). [CrossRef] [Google Scholar]
  11. R. Vidoni, A. Gasparetto. Efficient Force Distribution and Leg Posture for a Bio-Inspired Spider Robot, Robotics and Autonomous Systems, 59: 142–150, (2011). [CrossRef] [Google Scholar]
  12. «ROBOTIS» catalogue. [Google Scholar]
  13. A.A. Karpov, A. Lale, A.L. Ronzhin. Multimodal assistive systems for a smart living environment. SPIIRAS Proceedings, 19: 48–64, (2011). [Google Scholar]
  14. A.I. Motienko, A.L. Ronzhin, N.A. Pavlyuk. Modern developments of rescue robots: possibilities and principles of their application, Science Bulletin of the NSTU, 3/60: 147–165, (2015). [Google Scholar]
  15. A.L. Ronzhin, V.Yu. Budkov. Multimodal Interaction with Intelligent Meeting Room Facilities from Inside and Outside, NEW2AN/ruSMART 2009, LNCS 5764: 77–88, (2009). [Google Scholar]
  16. R.M. Yusupov, A.L. Ronzhin. From Smart Devices to Smart Space, Herald of the Russian Academy of Sciences, 80/1: 45–51, (2010). [Google Scholar]
  17. A.A. Karpov, A.L. Ronzhin. Information Enquiry Kiosk with Multimodal User Interface, Pattern Recognition and Image Analysis, 19/3 (Moscow: MAIK Nauka/Interperiodica): 546–558, (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.