Open Access
Issue
MATEC Web Conf.
Volume 76, 2016
20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016)
Article Number 04031
Number of page(s) 6
Section Computers
DOI https://doi.org/10.1051/matecconf/20167604031
Published online 21 October 2016
  1. D. Li, B. Liang, a W. Zhang, „Real-time moving vehicle detection, tracking, and counting system implemented with OpenCV“, in 2014 4th IEEE International Conference on Information Science and Technology, 2014, s. 631–634. [CrossRef] [Google Scholar]
  2. D. G. Lowe, “Distinctive Image Features from Scale- Invariant Keypoints”, International Journal of Computer Vision, 60, 2, pp. 91-110, 2004. [CrossRef] [Google Scholar]
  3. “OpenCV: Introduction to SIFT (Scale-Invariant Feature Transform)”, Retrieved May 24, 2016, from http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html [Google Scholar]
  4. H. Bay and T. Tuytelaars and L. Van Gool, “SURF: Speeded Up Robust Features”, 9th European Conference on Computer Vision, 2006. [Google Scholar]
  5. “Introduction to SURF (Speeded-Up Robust Features)”, Retrieved May 24, 2016, from http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html [Google Scholar]
  6. “Features2D + Homography to find a known object”, Retrieved May 24, 2016, from http://docs.opencv.org/2.4/doc/tutorials/features2d/feature_homography/feature_homography.html [Google Scholar]
  7. Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to SIFT or SURF. ICCV 2011: 2564–2571. [Google Scholar]
  8. B. Babenko, M-H. Yang, and S. Belongie, “Visual Tracking with Online Multiple Instance Learning”, In CVPR, 2009. [Google Scholar]
  9. Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward- Backward Error: Automatic Detection of Tracking Failures”, International Conference on Pattern Recognition, 2010, pp. 23–26. [Google Scholar]
  10. J. H. Friedman, T. Hastie and R. Tibshirani, “Additive Logistic Regression: a Statistical View of Boosting.”, Technical Report, Dept. of Statistics, Stanford University, 1998. [Google Scholar]
  11. Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking- Learning-Detection,” Pattern Analysis and Machine Intelligence 2011. [Google Scholar]
  12. Wu, Yi et al., “Object Tracking Benchmark”, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015): 1834–1848. [CrossRef] [Google Scholar]
  13. Wu, Yi et al., “Online Object Tracking: A Benchmark”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2411–2418. [Google Scholar]
  14. “Visual Tracker Benchmark. (n.d.)”, Retrieved May 23, 2016, from http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html. [Google Scholar]
  15. Z. Kalal, K. Mikolajczyk, a J. Matas, „Face-TLD: Tracking-Learning-Detection applied to faces", in 2010 IEEE International Conference on Image Processing, 2010, s. 3789–3792. [Google Scholar]
  16. Z. Kalal, K. Mikolajczyk, a J. Matas, „Tracking-Learning-Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, roč. 34, č. 7, s. 1409–1422, čvc. 2012. [CrossRef] [Google Scholar]
  17. I. Culjak, D. Abram, T. Pribanic, H. Dzapo, a M. Cifrek, „A brief introduction to OpenCV“, in 2012 Proceedings of the 35th International Convention MIPRO, 2012, s. 1725–1730. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.