Open Access
MATEC Web Conf.
Volume 76, 2016
20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016)
Article Number 01001
Number of page(s) 9
Section Circuits
Published online 21 October 2016
  1. Wen-Ming Zhang, Han Yan, Zhi-Ke Peng, Guang Meng, Electrostatic pull-in instability in MEMS/NEMS: A review – Sensors and Actuators A 214 p.187–218 (2014) [CrossRef]
  2. Eom K., Park Harold S. (et al) Nanomechanical resonators and their applications in biologi-cal/chemical detection: Nanomechanics principles. Physics Reports, V. 503 p. 115–163 (2011) [CrossRef]
  3. Scott Bunch J. (et al) Electromechanical Resonators from Graphene Sheets V. 315 p. 490–493 (2007)
  4. Chen C. (et al) Performance of monolayer graphene, Nature Nanotechnology, V. 4 p. 861-867 (2009) [CrossRef]
  5. He X.Q., Kitipornchai S., Liew K.M. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology V.16 p. 2086–2091 (2009)
  6. John A. Pelesko, Tobin A. Driscoll The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models Journal of Engineering Mathematics, 53, p. 239-25 (2005) [CrossRef]
  7. B. Gidas, Ni, L. Wei-Ming N. Nirenberg Symmetry and Related Properties via the Maximum Principle Commun. Math. Phys. 68 p.209–243 (1979) [CrossRef] [MathSciNet]
  8. Dong Ye., Feng Zhou On a general family of non-autonomous elliptic and parabolic equations Calc. Var. 37 p.259–274 (2010) [CrossRef]
  9. Griberg Ya.S. (et al) Nanomechanical resonators, Sucs.of Phys.Sience, 4 V.182 p.407–436 (2012)
  10. Raiher Yu.L., Stolbov O.V., Stepanov G.V. Deformation of a round membrane (ferro-elastic) in uniform magnetic field, Journ. Technic. Phys. V.78, issue 9, p.69-76 (2008)
  11. Morozov N.F., Berinsrii I.E., Indeitsev D.A., Priva-lova O.V., Skubov D.Yu., Shtukin L.V. Failure of oscillations of graphene resonator as a method of determination of its spectral characteristics, DAS, V. 456, № 5, p.537–540 (2014)
  12. Shtukin L.V., Berinskii I.E., Indeitsev D.A., Mo-rozov N.F., Skubov D.Yu. Electromechanical mo-dels of nanoresonators, Physic. Mezomechanics, V. 19, № 1 (2016)
  13. Skubov D.Yu., A.V. Lukin, Popov I.A., Privalova O.V., Shtukin L.V. Branching of equlibrium forms of nonlinear NEMS/MEMS Proc. of III Intern. School-NDM, p. 274-281 (2016)
  14. Vainberg M.M., Trenogin V.A. The theory of bifurcation of nonlinear equations – M.: Science, (1969)
  15. Antman St., Keller J. B. Bifurcation theory and nonlinear eigenvalue problems – M.: World, (1974)
  16. Sansone J. Ordinary differential equations –M.: In.Lit., (1953)
  17. Bellman R. Theory of stability solutions of differential equations - M.: In.Lit. (1954)
  18. Fridman V.M. Theory of elastic oscillations. Equations and methods–St.Petersb.: Sciece (2014)
  19. Skubov D.Yu., Khodzhaev K.Sh. Nonlinear electromechanics – Springer-Verlag (2003)
  20. Documentation Matlab, The Math Works, Inc., 2015

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.