Open Access
Issue |
MATEC Web Conf.
Volume 76, 2016
20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 9 | |
Section | Circuits | |
DOI | https://doi.org/10.1051/matecconf/20167601001 | |
Published online | 21 October 2016 |
- Wen-Ming Zhang, Han Yan, Zhi-Ke Peng, Guang Meng, Electrostatic pull-in instability in MEMS/NEMS: A review – Sensors and Actuators A 214 p.187–218 (2014) [Google Scholar]
- Eom K., Park Harold S. (et al) Nanomechanical resonators and their applications in biologi-cal/chemical detection: Nanomechanics principles. Physics Reports, V. 503 p. 115–163 (2011) [Google Scholar]
- Scott Bunch J. (et al) Electromechanical Resonators from Graphene Sheets V. 315 p. 490–493 (2007) [Google Scholar]
- Chen C. (et al) Performance of monolayer graphene, Nature Nanotechnology, V. 4 p. 861-867 (2009) [CrossRef] [Google Scholar]
- He X.Q., Kitipornchai S., Liew K.M. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology V.16 p. 2086–2091 (2009) [Google Scholar]
- John A. Pelesko, Tobin A. Driscoll The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models Journal of Engineering Mathematics, 53, p. 239-25 (2005) [CrossRef] [Google Scholar]
- B. Gidas, Ni, L. Wei-Ming N. Nirenberg Symmetry and Related Properties via the Maximum Principle Commun. Math. Phys. 68 p.209–243 (1979) [CrossRef] [MathSciNet] [Google Scholar]
- Dong Ye., Feng Zhou On a general family of non-autonomous elliptic and parabolic equations Calc. Var. 37 p.259–274 (2010) [CrossRef] [Google Scholar]
- Griberg Ya.S. (et al) Nanomechanical resonators, Sucs.of Phys.Sience, 4 V.182 p.407–436 (2012) [Google Scholar]
- Raiher Yu.L., Stolbov O.V., Stepanov G.V. Deformation of a round membrane (ferro-elastic) in uniform magnetic field, Journ. Technic. Phys. V.78, issue 9, p.69-76 (2008) [Google Scholar]
- Morozov N.F., Berinsrii I.E., Indeitsev D.A., Priva-lova O.V., Skubov D.Yu., Shtukin L.V. Failure of oscillations of graphene resonator as a method of determination of its spectral characteristics, DAS, V. 456, № 5, p.537–540 (2014) [Google Scholar]
- Shtukin L.V., Berinskii I.E., Indeitsev D.A., Mo-rozov N.F., Skubov D.Yu. Electromechanical mo-dels of nanoresonators, Physic. Mezomechanics, V. 19, № 1 (2016) [Google Scholar]
- Skubov D.Yu., A.V. Lukin, Popov I.A., Privalova O.V., Shtukin L.V. Branching of equlibrium forms of nonlinear NEMS/MEMS Proc. of III Intern. School-NDM, p. 274-281 (2016) [Google Scholar]
- Vainberg M.M., Trenogin V.A. The theory of bifurcation of nonlinear equations – M.: Science, (1969) [Google Scholar]
- Antman St., Keller J. B. Bifurcation theory and nonlinear eigenvalue problems – M.: World, (1974) [Google Scholar]
- Sansone J. Ordinary differential equations –M.: In.Lit., (1953) [Google Scholar]
- Bellman R. Theory of stability solutions of differential equations - M.: In.Lit. (1954) [Google Scholar]
- Fridman V.M. Theory of elastic oscillations. Equations and methods–St.Petersb.: Sciece (2014) [Google Scholar]
- Skubov D.Yu., Khodzhaev K.Sh. Nonlinear electromechanics – Springer-Verlag (2003) [Google Scholar]
- Documentation Matlab, The Math Works, Inc., 2015 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.