Open Access
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00019
Number of page(s) 8
Published online 29 August 2016
  1. V. C. Güngör, D. Sahin, T. Kocak, S. Ergüt, C. Buccella, C. Cecati, and G. P. Hancke, “Smart grid technologies: Communication technologies and standards,” IEEE Trans. Ind. Informatics, vol. 7, no. 4, pp. 529–539, 2011. [CrossRef]
  2. D. Rekioua, S. Bensmail, and N. Bettar, “Development of hybrid photovoltaic-fuel cell system for stand-alone application,” Int. J. Hydrogen Energy, vol. 39, no. 3, pp. 1604–1611, 2014. [CrossRef]
  3. S. Mekhilef, R. Saidur, and a. Safari, “Comparative study of different fuel cell technologies,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 981–989, 2012. [CrossRef]
  4. a. Larrosa-Guerrero, K. Scott, I. M. Head, F. Mateo, a. Ginesta, and C. Godinez, “Effect of temperature on the performance of microbial fuel cells,” Fuel, vol. 89, no. 12, pp. 3985–3994, 2010. [CrossRef]
  5. W. Schmittinger and A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells,” J. Power Sources, vol. 180, no. 1, pp. 1–14, May 2008. [CrossRef]
  6. F. Sarhaddi, S. Farahat, H. Ajam, a. Behzadmehr, and M. Mahdavi Adeli, “An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector,” Appl. Energy, vol. 87, no. 7, pp. 2328–2339, Jul. 2010. [CrossRef]
  7. H. Zondag, “Flat-plate PV-Thermal collectors and systems: A review,” Renew. Sustain. Energy Rev., vol. 12, no. 4, pp. 891–959, May 2008. [CrossRef]
  8. P. G. Charalambous, G. G. Maidment, S. a. Kalogirou, and K. Yiakoumetti, “Photovoltaic thermal (PV/T) collectors: A review,” Appl. Therm. Eng., vol. 27, no. 2–3, pp. 275–286, Feb. 2007. [CrossRef]
  9. S. C. Solanki, S. Dubey, and A. Tiwari, “Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors,” Appl. Energy, vol. 86, no. 11, pp. 2421–2428, 2009. [CrossRef]
  10. T. H. Lin, W. C. Hung, and F. S. Sun, “PERFORMANCE EVALUATION OF SOLAR PHOTOVOLTAIC /THERMAL SYSTEMS,” vol. 70, no. 5, pp. 443–448, 2001.
  11. J. Ji, G. Pei, T. T. Chow, K. Liu, H. He, J. Lu, and C. Han, “Experimental study of photovoltaic solar assisted heat pump system,” Sol. Energy, vol. 82, no. 1, pp. 43–52, 2008. [CrossRef]
  12. K. Moradi, M. Ali Ebadian, and C.-X. Lin, “A review of PV/T technologies: Effects of control parameters,” Int. J. Heat Mass Transf., vol. 64, pp. 483–500, Sep. 2013. [CrossRef]
  13. K. Vats, V. Tomar, and G. N. Tiwari, “Effect of packing factor on the performance of a building integrated semitransparent photovoltaic thermal (BISPVT) system with air duct,” Energy Build., vol. 53, pp. 159–165, Oct. 2012. [CrossRef]
  14. T. T. Chow, W. He, and J. Ji, “Hybrid photovoltaic-thermosyphon water heating system for residential application,” Sol. Energy, vol. 80, no. 3, pp. 298–306, Mar. 2006. [CrossRef]
  15. A. Tiwari and M. S. Sodha, “Performance evaluation of hybrid PV/thermal water/air heating system: A parametric study,” Renew. Energy, vol. 31, no. 15, pp. 2460–2474, Dec. 2006. [CrossRef]
  16. a. Shahsavar and M. Ameri, “Experimental investigation and modeling of a direct-coupled PV/T air collector,” Sol. Energy, vol. 84, no. 11, pp. 1938–1958, 2010. [CrossRef]
  17. A. Ibrahim, M. Y. Othman, M. H. Ruslan, M. A. Alghoul, M. Yahya, A. Zaharim, and K. Sopian, “Performance of Photovoltaic Thermal Collector (PVT) With Different Absorbers Design,” vol. 5, no. 3, pp. 321–330, 2009.
  18. A. Tiwari and M. S. Sodha, “Parametric study of various configurations of hybrid PV/thermal air collector: Experimental validation of theoretical model,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 1, pp. 17–28, Jan. 2007. [CrossRef]
  19. S. Dubey and G. N. Tiwari, “Analysis of PV/T flat plate water collectors connected in series,” Sol. Energy, vol. 83, no. 9, pp. 1485–1498, Sep. 2009. [CrossRef]
  20. T. T. Chow, “Performance analysis of photovoltaic-thermal collector by explicit dynamic model,” Sol. Energy, vol. 75, no. 2, pp. 143–152, Aug. 2003. [CrossRef]
  21. H. A. Zondag, D. W. De Vries, W. G. J. Van Helden, and R. J. C. Van Zolingen, “The yield of different combined PV-thermal collector designs,” vol. 74, pp. 253–269, 2003.
  22. a. Kirubakaran, S. Jain, and R. K. Nema, “A review on fuel cell technologies and power electronic interface,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2430–2440, 2009. [CrossRef]
  23. K. Rajashekara, “Hybrid fuel-cell strategies for clean power generation,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 682–689, 2005. [CrossRef]
  24. M. Y. El-Sharkh, a. Rahman, M. S. Alam, P. C. Byrne, a. a. Sakla, and T. Thomas, “A dynamic model for a stand-alone PEM fuel cell power plant for residential applications,” J. Power Sources, vol. 138, no. 1–2, pp. 199–204, Nov. 2004. [CrossRef]
  25. S. D. Oh, K. Y. Kim, S. B. Oh, and H. Y. Kwak, “Optimal operation of a 1-kW PEMFC-based CHP system for residential applications,” Appl. Energy, vol. 95, pp. 93–101, 2012. [CrossRef]
  26. S. G. Kandlikar and Z. Lu, “Thermal management issues in a PEMFC stack – A brief review of current status,” Appl. Therm. Eng., vol. 29, no. 7, pp. 1276–1280, May 2009. [CrossRef]
  27. S. Obara and I. Tanno, “Exergy analysis of a regional-distributed PEM fuel cell system,” Int. J. Hydrogen Energy, vol. 33, no. 9, pp. 2300–2310, 2008. [CrossRef]
  28. S. Obara, “CO2 discharge characteristic of PEM-FC/hydrogen-gas-engine hybrid cogeneration,” Int. J. Hydrogen Energy, vol. 32, no. 7, pp. 819–831, 2007. [CrossRef]
  29. G. Bruni, S. Cordiner, M. Galeotti, V. Mulone, M. Nobile, and V. Rocco, “Control strategy influence on the efficiency of a hybrid photovoltaic-battery-fuel cell system distributed generation system for domestic applications,” Energy Procedia, vol. 45, pp. 237–246, 2014. [CrossRef]
  30. L. Zhang and A. Q. Huang, “Model-based fault detection of hybrid fuel cell and photovoltaic direct current power sources,” J. Power Sources, vol. 196, no. 11, pp. 5197–5204, 2011. [CrossRef]
  31. G. Bruni, S. Cordiner, and V. Mulone, “Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system,” Energy, vol. 77, pp. 133–143, 2014. [CrossRef]
  32. M. T. Gencoglu and Z. Ural, “Design of a PEM fuel cell system for residential application,” Int. J. Hydrogen Energy, vol. 34, no. 12, pp. 5242–5248, 2009. [CrossRef]
  33. M. Castañeda, A. Cano, F. Jurado, H. Sánchez, and L. M. Fernández, “Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system,” Int. J. Hydrogen Energy, vol. 38, no. 10, pp. 3830–3845, 2013. [CrossRef]
  34. J. J. Hwang, L. K. Lai, W. Wu, and W. R. Chang, “Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system,” Int. J. Hydrogen Energy, vol. 34, no. 23, pp. 9531–9542, 2009. [CrossRef]
  35. T. F. El-Shatter, M. N. Eskandar, and M. T. El-Hagry, “Hybrid PV/fuel cell system design and simulation,” Renew. Energy, vol. 27, no. 3, pp. 479–485, 2002. [CrossRef]
  36. S. G. Tesfahunegn, Ø. Ulleberg, P. J. S. Vie, and T. M. Undeland, “PV fluctuation balancing using hydrogen storage - A smoothing method for integration of PV generation into the utility grid,” Energy Procedia, vol. 12, no. 1876, pp. 1015–1022, 2011. [CrossRef]
  37. M. Uzunoglu, O. C. Onar, and M. S. Alam, “Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications,” Renew. Energy, vol. 34, no. 3, pp. 509–520, 2009. [CrossRef]
  38. P. Thounthong, S. Sikkabut, a. Luksanasakul, P. Koseeyaporn, P. Sethakul, S. Pierfederici, and B. Davat, “Fuzzy logic based DC bus voltage control of a stand alone photovoltaic/fuel cell/supercapacitor power plant,” 2012 11th Int. Conf. Environ. Electr. Eng. EEEIC 2012 - Conf. Proc., pp. 725–730, 2012.
  39. P. Thounthong, V. Chunkag, P. Sethakul, S. Sikkabut, S. Pierfederici, and B. Davat, “Energy management of fuel cell/solar cell/supercapacitor hybrid power source,” J. Power Sources, vol. 196, no. 1, pp. 313–324, 2011. [CrossRef]
  40. P. Thounthong, A. Luksanasakul, P. Koseeyaporn, and B. Davat, “Intelligent model-based control of a standalone photovoltaic/fuel cell power plant with supercapacitor energy storage,” IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 240–249, 2013. [CrossRef]
  41. N. a. Ahmed, a. K. Al-Othman, and M. R. Alrashidi, “Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation,” Electr. Power Syst. Res., vol. 81, no. 5, pp. 1096–1106, 2011. [CrossRef]
  42. N. Mezzai, D. Rekioua, T. Rekioua, a. Mohammedi, K. Idjdarane, and S. Bacha, “Modeling of hybrid photovoltaic/wind/fuel cells power system,” Int. J. Hydrogen Energy, vol. 39, no. 27, pp. 15158–15168, 2014. [CrossRef]
  43. C. Wang, S. Member, and M. H. Nehrir, “Power Management of a Stand-Alone Wind /Photovoltaic /Fuel Cell Energy System,” vol. 23, no. 3, pp. 957–967, 2008.
  44. N. a. Ahmed, M. Miyatake, and a. K. Al-Othman, “Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems,” Energy Convers. Manag., vol. 49, no. 10, pp. 2711–2719, 2008. [CrossRef]
  45. S. Zafar and I. Dincer, “Thermodynamic analysis of a combined PV/T-fuel cell system for power, heat, fresh water and hydrogen production,” Int. J. Hydrogen Energy, vol. 39, no. 19, pp. 9962–9972, 2014. [CrossRef]
  46. M. Hosseini, I. Dincer, and M. a. Rosen, “Hybrid solar-fuel cell combined heat and power systems for residential applications: Energy and exergy analyses,” J. Power Sources, vol. 221, pp. 372–380, 2013. [CrossRef]
  47. Luigi T. De Luca, Propulsion physics (EDP Sciences, Les Ulis, 2009)
  48. F. De Lillo, F. Cecconi, G. Lacorata, A. Vulpiani, EPL, 84 (2008) [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.