Open Access
MATEC Web Conf.
Volume 70, 2016
2016 The 3rd International Conference on Manufacturing and Industrial Technologies
Article Number 12005
Number of page(s) 5
Section Development and Applications of Energy
Published online 11 August 2016
  1. Bringezu S., Schütz H., O’Brien M., Kauppi L., Howarth R.W. and McNeely J., Report of UNEP (United Nations Environment Programme), Towards Sustainable Production and Use of Resources: Assessing Biofuels (2009). [Google Scholar]
  2. RFA (Renewable Fuels Association), Accelerating Industry Innovation - 2012. Ethanol Industry Outlook (2012). [Google Scholar]
  3. Flavin C., Sawin J. L., Mastny L., Aeck M. H., Hunt S., MacEvitt A. and Stair P., Report of American Energy, The renewable path to energy security, Worldwatch Institute and Center for American Progress (2006). [Google Scholar]
  4. Gonzales G., Lopes-Santin J., Caminal G. and Sola C. Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model. Biotechnol Bioeng, 28:288–293, (1986) [CrossRef] [Google Scholar]
  5. Pessoa Jr. A., Mancilha I.M. and Sato S. Acid hydrolysis of hemicellulose from sugarcane bagasse. Braz. J. Chem. Eng. 14:291–297, (1997). [CrossRef] [Google Scholar]
  6. Hu G., Heitmann J.A. and Rojas O.J., Feedstocks pretreatment strategies for producing ethanol from wood, bark and forest residues, BioResources, 3:270–294, (2008) [Google Scholar]
  7. Yang L., Lu M., Carl S., Mayer J. A., Cushman J. C., Tian E., & Lin H., Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass and Bioenergy, 76, 43–53. doi:10.1016/j.biombioe.2015.03.004, (2015) [CrossRef] [Google Scholar]
  8. Mishima D., Kuniki M., Sei K., Soda S., Ike M. and Fujita M. Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 99:2495–2500, (2008). [CrossRef] [Google Scholar]
  9. Nigam J. N. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast, J. Biotechnol. 97:107–116, (2002) [Google Scholar]
  10. Abraham M. and Kurup G.M. Pretreatment studies of cellulose wastes for optimization of cellulose enzyme activity. Appl. Biochem. Biotechnol. 62:201–211, (1997). [CrossRef] [Google Scholar]
  11. EEA, 2012. The impacts of invasive alien species in Europe. EEA Technical Report No. 16/2012. Luxembourg: Publications Office of the European Union. [Google Scholar]
  12. Gichuki J., Omondi R., Boera P., Tom Okorut T., Said Matano A., Jembe T. and Ofulla A. Water hyacinth Eichhornia crassipes (Mart.) Solms-Laubach dynamics and succession in the Nyanza Gulf of Lake Victoria (East Africa): implications forwater quality and biodiversity conservation. The Scientific World Journal 2012, 10 pp. [Google Scholar]
  13. Ganguly A., Das S., Bhattacharya A., Singh P., Chatterjee P. K. and Dey A. Studies on the production of xylose from water hyacinth. Chemical Science, 2(1):1–7, (2013) [Google Scholar]
  14. Aswathy U.S., Sukumaran R. K., Devi G. L., Rajasree K.P., Singhania R. R. and Pandey A. Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresource Technology, 101:925–930, (2010) [CrossRef] [Google Scholar]
  15. Ganguly A., Das S., Dey A., Das R. and Chatterjee P. K. Optimization of xylose yield from water hyacinth for ethanol production using Taguchi Technique. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 3(5):1–9, (2012) [CrossRef] [Google Scholar]
  16. Harun M.Y., Radiaha A.B.D., Abidina Z.Z. and Yunus R. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresource Technology, 102:5193–5199, (2011) [CrossRef] [Google Scholar]
  17. Silverstein R., Chen Y., Sharma-Shivappa R., Boyette M. and Osborne J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks, Bioresour. Technol. 98:3000–3011, (2007) [CrossRef] [Google Scholar]
  18. Boudet A. M., Kajita S., Grima-Pettenati J. and Goffner D., Lignins and lignocellulosics: a better control of synthesis for new and improved uses, Trends Plant Sci, 8:576–581, (2003) [CrossRef] [Google Scholar]
  19. Da Costa Sousa L., Chundawat S.P.S., Balan V. and Dale B.E., ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies, Curr. Opin. Biotechnol. 20:339–347, (2009) [CrossRef] [Google Scholar]
  20. Binod P., Sindhu R., Singhania R., Vikram S., Devi L., Nagalakshmi S., Kurien N., Sukumaran R. and Pandey A., Bioethanol production from rice straw: an overview, Bioresour. Technol. 101:4767–4774, (2010) [CrossRef] [Google Scholar]
  21. Dien B. S., Cotta M. A. and Jeffries T.W. Bacteria engineered for fuel ethanol production: current status, Appl. Microbiol. Biotechnol. 63:258–266, (2003) [CrossRef] [Google Scholar]
  22. Wooley R., Ruth M., Glassner D. and Sheehan J. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol. Prog. 15:794–803, (1999) [CrossRef] [Google Scholar]
  23. Krahulec S., Kratzer R., Longus K. and Nidetzky B. Comparison of Scheffersomyces stipitis strains CBS 5773 and CBS 6054 with regard to their xylose metabolism: implications for xylose fermentation. Microbiology Open, 1:64–70, (2012) [CrossRef] [Google Scholar]
  24. Knauf M. and Moniruzzaman M. Lignocellulosic biomass processing: A perspective. Int Sugar J. 106:147–150, (2004) [Google Scholar]
  25. Lin Y. and Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 69:627–642, (2006) [CrossRef] [Google Scholar]
  26. Abdullah M. O., Lim S.F., Salleh S.F., Tai T.M., Leo S.L. and Umar A.K. Development of a small-scale reactor system for bioethanol production from agriculture waste geared towards small industries applications in Malaysia. Agriculture. 12:12–15, (2011) [Google Scholar]
  27. Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M. F., Lidén G. and Zacchi G. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24:549–556, (2006) [CrossRef] [Google Scholar]
  28. Theuri M. Water hyacinth – Can its aggressive invasion be controlled? Environmental Development, 7:139–154, (2013) [CrossRef] [Google Scholar]
  29. Zhang Y., Zhang D. and Barrett S. Genetic uniformity characterises the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology, 19:1774–1786, (2010) [CrossRef] [Google Scholar]
  30. Sarkar N., Ghosh S.K., Bannerjee S. and Aikat K. Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37:19–27, (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.