Open Access
Issue
MATEC Web Conf.
Volume 70, 2016
2016 The 3rd International Conference on Manufacturing and Industrial Technologies
Article Number 03003
Number of page(s) 6
Section Power Machinery and Equipment
DOI https://doi.org/10.1051/matecconf/20167003003
Published online 11 August 2016
  1. Liang D W, Huang G P. Recent Development and Key Techniques of Micro Turbine in Centimeter Size. Gas Turbine Experiment and Research, 17(2):9–13, (2001). [Google Scholar]
  2. Yuan P Y. The Present Situation and Development Prospect of Micro Turbine Engine. International Aviation, 7 1996 [Google Scholar]
  3. Janson S.W., Helvajian H., MEMS, Micro-engineering and Aeiospace Systems. AIAA, 99–3802. [Google Scholar]
  4. Li C, Fang S Z, Zhang P. Numerical Simulation of Annular Combustion Chamber for Micro Turbine Engine. Journal of Propulsion Technology, 5:513–518, (2008) [Google Scholar]
  5. Jacobson S A. Aero-thermal challenges in the design of a micro-fabricated gas turbine engine. AIAA, 98–2545. [Google Scholar]
  6. Saburo Y, Kana O. Concept and experiment of a flat-flame micro combustor for ultra micro gas turbine. AIAA, 2002–3771. [Google Scholar]
  7. Yuan Y Z, Wang L P, Guan L W. Numerical Simulation and Optimization od A Micro Annula Combustor. J Tsinghua Univ (Sci&Tech), 2:198–201+209, (2007) [Google Scholar]
  8. Amit, et al. A Six-Wafer Combustion System for a Silicon Micro Gas Turbine Engine. Journal of Micro-electromechanical Systems, 9–4, (2000) [Google Scholar]
  9. Stuart A. Jacobson. Aero-thermal challenges in the design of a micro-fabricated gas turbine engine, Albuquerque: 29th AIAA Fluid Dynamics Conference, 98–2445. [Google Scholar]
  10. A. H. Epstein, S. D. Serturia, et al. Micro-heat engines, gas turbines, and rocket engines-The MIT micro-engine project. Snowmass Village: 28th AIAA Fluid Dynamics Conference, 97–1773. [Google Scholar]
  11. C. M. Spadaccini, et al. High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines, Journal of Engineering for Gas Turbines and Power,: 125: 709–719, (2003) [CrossRef] [Google Scholar]
  12. P. J. Conelho. Numerical Simulation of a Mild Combustion Burner. Combustion and Flame,, 124: 503–518, (2001) [CrossRef] [Google Scholar]
  13. Denis Veynante, Luc Vervisch. Turbulent combustion modeling, Progress in Energy and Combustion Science, 28:193–266, (2002). [CrossRef] [Google Scholar]
  14. Jinsong Hua, Meng Wu, Kurichi Kumar. Numerical Simulation of The Combustion of Hydrogen–Air Mixture in Micro-Scaled Chambers. Part I: Fundamental study, Chemical Engineering Science,: 60:3497–3506, (2005) [CrossRef] [Google Scholar]
  15. Jinsong Hua, Meng Wu, Kurichi Kumar. Numerical Simulation of The Combustion of Hydrogen–Air Mixture in Micro-Scaled Chambers. Part II: CFD analysis for a micro-combustor, Chemical Engineering Science, 60:3507–3515, (2005) [CrossRef] [Google Scholar]
  16. Wen Z, Shi L Y, Ren Y R. FLUENT Fluid Computing Applications Course, Tsinghua University Press, 1 (2009) [Google Scholar]
  17. Alan H. Epstein. Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines, Journal of Engineering for Gas Turbines and Power, 126:205–226, (2004) [CrossRef] [Google Scholar]
  18. Wang D. Experimental Study of Micro Turbojet Engine, Nanjing University of Science and Technology, (2011) [Google Scholar]
  19. Li C. The Design and Numerical Simulation Performance of Micro Turbojet Engine, Beijing Institute of Technology, (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.