Open Access
MATEC Web Conf.
Volume 69, 2016
2016 5th International Conference on Chemical and Process Engineering (ICCPE 2016)
Article Number 07001
Number of page(s) 5
Section Chemical Industry
Published online 02 August 2016
  1. SchulzH.; Short history and present trends of Fischer-Trosch synthesis, Applied Catalysis A, 186, 3–12 (1999). [CrossRef] [Google Scholar]
  2. DryM. E.; The Fischer Tropsch Process: 1950-2000, Catalysis Today, 71, 227–241 (2002). [CrossRef] [Google Scholar]
  3. TakeshitaT., YamajiK.; Important roles of Fischer-Tropsch synfuels in the global energy future, Energy Policy, 36, 2773–2784 (2008). [CrossRef] [Google Scholar]
  4. YorkA. P. E., XiaoT. C., GreenM. L. H., ClaridgeJ. B.; Methane oxyreforming for synthesis gas production, Catal. Rev. Sci. Eng., 49, 511–560 (2007). [CrossRef] [Google Scholar]
  5. SongX., GuoZ.; Technologies for direct production of flexible hydrogen/CO synthesis gas, Energy Conversion and Management, 47, 560–569 (2006). [CrossRef] [Google Scholar]
  6. Aasberg-PetersenK., ChristensenT. S., NielsenC. S., DybkjaerI.,; Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications, Fuel Process. Technol., 83, 253–261 (2003). [CrossRef] [Google Scholar]
  7. PatcharavorachotY., WasuleewanM., AssabumrungratS., ArpornwichanopA.; Analysis of hydrogen production from methane autothermal reformer with a dual catalyst-bed configuration, Theor. Found. Chem. Eng., 46,658–665 (2012). [CrossRef] [Google Scholar]
  8. PadbanN.; BecherV. Clean Hydrogen-Rich Synthesis Gas;Chris Gas Report, (2005). [Google Scholar]
  9. ZhuQ.; ZhaoX.; DengY. Advances in the Partial Oxidation of Methane to Synthesis Gas. J. Nat. Gas Chem., 13, 191–203 (2004). [Google Scholar]
  10. Van HardeveldR. M.; GroeneveldM. J.; LehmanJ. Y.; BullD. C. Investigation of an Air Separation Unit Explosion. J. Loss Prev. Process Ind., 14, 167–180 (2001). [CrossRef] [Google Scholar]
  11. MaqboolW. & LeeE. S., Syngas Production Process Development and Economic Evaluation for Gas‐to‐Liquid Applications. Chemical Engineering & Technology, 37, 995–1001 (2014). [CrossRef] [Google Scholar]
  12. PinaJ., BorioD. O.; Modeling and simulation of an autothermal reformer, Latin Am. Appl. Res., 36, 289–294 (2006). [Google Scholar]
  13. XuJ., FromentG. F.; Methane steam reforming, methanation and water-as shift: I. Intrinsic kinetics, AIChE J., 35, 88–96 (1989). [Google Scholar]
  14. JaubertJ. N.; Mutelet.F. VLE predictions with the Peng-Robinson equation of state and temperature dependent calculated through a group contribution method. Fluid Phase Equilibria, 224, 285–304 (2004). [Google Scholar]
  15. QasimF., ShinJ. S., ChoS. J., & ParkS. J., Optimizations and heat integrations on the separation of toluene and 1-butanol azeotropic mixture by pressure swing distillation. Separation Science and Technology, 51, 316–326 (2016) [CrossRef] [Google Scholar]
  16. OmideyiT. O.; KasprzyckiJ., WatsonF. A., The economics of heat pump assisted distillation sys-tems I. A design and economic model. J Heat Recov Syst., 4, 187–200 (1984). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.