Open Access
MATEC Web Conf.
Volume 69, 2016
2016 5th International Conference on Chemical and Process Engineering (ICCPE 2016)
Article Number 03006
Number of page(s) 6
Section Physical Chemistry
Published online 02 August 2016
  1. A. Amarnath, “Enhanced oil recovery scoping study,” (1999). [Google Scholar]
  2. J.J Taber, F.D. Martin, and R.S Seright, “EOR screening criteria revisited,” Paper presented at the Symposium on improved oil recovery (1996). [Google Scholar]
  3. H.T Zhu, Y.S Lin, and Y.S Yin, “A novel one-step chemical method for preparation of copper nanofluids,” Journal of Colloid and Interface Science, 277(1), 100–103 (2004). [CrossRef] [Google Scholar]
  4. J.G Richardson, and H.L Stone, “A quarter century of progress in the application of reservoir engineering,” Journal of Petroleum Technology, 25(12), 1371–1379 (1973). [CrossRef] [Google Scholar]
  5. T.D. Ma, and G.K Youngren, “Performance of immiscible water-alternating-gas (IWAG) injection at Kuparuk River Unit, North Slope, Alaska,” Paper presented at the SPE Annual Technical Conference and Exhibition (1994). [Google Scholar]
  6. N. Kothari, B. Raina, K. Chandak, V. Iyer, and H. Mahajan, “Application of ferrofluids for enhanced surfactant flooding in IOR,” Paper presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition (2010). [Google Scholar]
  7. R.S. Seright, “Clean Up of Oil Zones after a Gel Treatment,” Paper presented at the SPE International Symposium on Oilfield Chemistry (2005). [Google Scholar]
  8. R. A. F. Elsayed. “A Comparative Study between nanoparticles Method and the Other Methods for Increasing Heavy Oil Recovery”, MSc. thesis, Suez University (2014). [Google Scholar]
  9. Y. H. Shokrlu and T. Babadagli: “Transportation and Interaction of Nano and Micro Size Metal Particles Injected to Improve Thermal Recovery of Heavy-Oil”, SPE 146661-PA, DOI: 10.2118/146661-PA (2013). [Google Scholar]
  10. T. A. T. Mohd, N. Alias, N. A. Ghazali, E. Yahya, A. Sauki, A. Azizi, & N. M. Yusof. “Mobility Investigation of Nanoparticle-Stabilized Carbon Dioxide Foam for Enhanced Oil Recovery (EOR)”. Advanced Materials Research, 1119, 90–95 (2015). [CrossRef] [Google Scholar]
  11. T. A. T. Mohd, A. H. M. Muhayyidin, N. A. Ghazali, M. Z. Shahruddin, N. Alias, S. Arina and N. A. Ramlee. “Carbon Dioxide (CO2) Foam Stability Dependence on Nanoparticle Concentration for Enhanced Oil Recovery (EOR)”. Applied Mechanics and Materials, 548–549, 1876–1880 (2014). [CrossRef] [Google Scholar]
  12. L. N. Nwidee, S. Al-anssari, A. Barifcani, M. Sarmadivaleh & S. Iglauer. “Nanofluids for Enhanced Oil Recovery Processes : Wettability Alteration Experimental Set-Up”. Paper presented at the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016 (2016). [Google Scholar]
  13. C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H. Anguemintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon,” Int. J. Heat Fluid Flow 28 (6) 1492–1506 (2007). [CrossRef] [Google Scholar]
  14. W. Lu and Q. Fan, “Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method,” Eng. Anal. Boundary Elem. 32 (4) 282–289 (2008). [CrossRef] [Google Scholar]
  15. P.K. Namburu, D.P. Kulkarni, A. Dandekar and D.K. Das, “Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids,” Micro Nano Lett. 2 (3) 67–71 (2007). [CrossRef] [Google Scholar]
  16. E.V. Timofeeva, W. Yu, D.M. France, D. Singh and J.L. Routbort, “Nanofluids for heat transfer: an engineering approach,” Nanoscale Res. Lett. 6 (1) 182 (2011). [CrossRef] [Google Scholar]
  17. S.K. Das, N. Putra and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46 (5) 851–86 (2003). [CrossRef] [Google Scholar]
  18. N. Putra, W. Roetzel and S.K. Das, “Natural convection of nano-fluids,” Heat Mass Transfer 39(8) 775–784 (2008). [CrossRef] [Google Scholar]
  19. J. Chevalier, O. Tillement and F. Ayela, “Rheological properties of nanofluids flowing through microchannels,” Appl. Phys. Lett. 91 (23) 233103 (2007). [CrossRef] [Google Scholar]
  20. B. Mcdonagh, “Wiley-Blackwell discount”. Universal, Fortuna (2011). [Google Scholar]
  21. R. E. Larson, and J. J. L. Higdon. “Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow.” Journal of Fluid Mechanics 166: 449–472 (1986). [CrossRef] [Google Scholar]
  22. L. Hendraningrat, B. Engeset, S. Suwarno, S. Li and O. Torsæter, “Laboratory investigation of porosity and permeability impairment in Berea sandstones due to hydrophilic nanoparticle retention”, Paper SCA2013-062, California, USA (2013). [Google Scholar]
  23. N. Putra, W. Roetzel and S.K. Das, “Natural convection of nano-fluids,” Heat Mass Transfer 39 (8)775–784 (2008). [CrossRef] [Google Scholar]
  24. S.K Das, S.U. Choi, W. Yu, and T. Pradeep, “Nanofluids: science and technology”, Wiley-Interscience Hoboken, NJ (2008). [Google Scholar]
  25. L. Shidong, L. Hendraningrat, and O. Torsaeter. “Improved Oil Recovery by Hydrophilic Silica Nanoparticles Suspension: 2 Phase Flow Experimental Studies.” IPTC 2013: International Petroleum Technology Conference (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.