Open Access
Issue
MATEC Web Conf.
Volume 69, 2016
2016 5th International Conference on Chemical and Process Engineering (ICCPE 2016)
Article Number 03004
Number of page(s) 4
Section Physical Chemistry
DOI https://doi.org/10.1051/matecconf/20166903004
Published online 02 August 2016
  1. Y. H. Kim, K. Y. Koo and I. K. Song, Simulation Study on SCR(Steam Carbon Dioxide Reforming Process Optimization for Fischer-Tropsch Synthesis, Korean Chem. Eng. Res., 47, 700–704 (2009).
  2. J. R. Rostrup-Nielsen, Production of Synthesis Gas, Catal. Today, 18, 305–324 (1993). [CrossRef]
  3. C. Nottenbelt, Mossgas Gas-to-Liquid Diesel Fuels-An Environmentally Friendly Option, Catal. Today, 71, 437–445 (2002). [CrossRef]
  4. W. Maqbool & E. S. Lee. Syngas Production Process Development and Economic Evaluation for Gas‐to‐Liquid Applications. Chemical Engineering & Technology, 37, 995–1001 (2014). [CrossRef]
  5. T. Takeshita, K. Yamaji, Important roles of Fischer–Tropsch synfuels in the global energy future. Energy Policy, 36, 2773–2784 (2008). [CrossRef]
  6. M. E. Dry, The Fischer-Tropsch Processes, Catal. Today, 71, 227–241 (2002). [CrossRef]
  7. A.N. Pinheiro, A. Valentini, J.M. Sasaki, A.C. Oliveira, Highly stable dealuminated zeolite support for the production of hydrogen by dry reforming of methane, Appl. Catal. A, 355, 156–168 (2009). [CrossRef]
  8. D. J. Wilhelm, S. R. Simbeck A. D. Karp and R. L. Dickenson, Syngas Production for Gas-to-Liquids Applications: Technologies, Issues and Outlook, Fuel Process Technol., 71, 139–148 (2001). [CrossRef]
  9. X. Hao, “Simulation Analysis of a Gas-to-Liquid Process Using Aspen Plus”, Chem. Eng. Technol., 31, 188–196 (2008). [CrossRef]
  10. DL Trimm, The formation and removal of coke from nicket catalyst, Catal Rev-Sci Eng. 16, 155–189 (1977). [CrossRef]
  11. XE Verykio, Catalytic dry reforming of natural gas for the production of chemicals and hydrogen, International Journal of Hydrogen Energy, 28, 1045–1063 (2003).
  12. J.R. Rostrup-Nielsen, Syngas in perspective, Catal. Today 71, 243–247 (2002). [CrossRef]
  13. K. Aasberg-Petersen, J.-H. Bak Hansen, T. S. Christensen, I. Dybkjaer, P. S. Christensen, C. S. Nielsen, S. E. L. Winter Madsen and J. R. Rostrup-Nielsen, Technologies for Large-Scale Gas Conversion, Appl. Catal. A, 221, 379–387 (2001). [CrossRef]
  14. Y. Yang, H.W. Xiang, R.L. Zhang, B. Zhang, Y.W. Li, A highly active and stable Fe–Mn catalyst for slurry Fischer–Tropsch synthesis, Catalysis Today, 106, 170–175 (2005). [CrossRef]
  15. A.K. Dalai and B.H. Davis, Fischer-Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts, Applied Catalysis A: General, 348, 1–15 (2008). [CrossRef]
  16. Y. J. Lee, S. I. Hong, D, J Moon, Studies on the steam and CO2 reforming of methane for GTL-FPSO applications, Catalysis Today, 174, 31–36 (2011). [CrossRef]
  17. Y. H. Kim, D. Y. Hwang, S. H. Song, S. B. Lee, E. D. Park, and M. J. Park, Kinetic parameter estimation of the Fischer-Tropsch synthesis reaction on K/Fe-Cu-Al catalysts, Korean J. Chem. Eng., 26, 1591–1600 (2009). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.