Open Access
Issue
MATEC Web Conf.
Volume 69, 2016
2016 5th International Conference on Chemical and Process Engineering (ICCPE 2016)
Article Number 03004
Number of page(s) 4
Section Physical Chemistry
DOI https://doi.org/10.1051/matecconf/20166903004
Published online 02 August 2016
  1. Y. H. Kim, K. Y. Koo and I. K. Song, Simulation Study on SCR(Steam Carbon Dioxide Reforming Process Optimization for Fischer-Tropsch Synthesis, Korean Chem. Eng. Res., 47, 700–704 (2009). [Google Scholar]
  2. J. R. Rostrup-Nielsen, Production of Synthesis Gas, Catal. Today, 18, 305–324 (1993). [CrossRef] [Google Scholar]
  3. C. Nottenbelt, Mossgas Gas-to-Liquid Diesel Fuels-An Environmentally Friendly Option, Catal. Today, 71, 437–445 (2002). [CrossRef] [Google Scholar]
  4. W. Maqbool & E. S. Lee. Syngas Production Process Development and Economic Evaluation for Gas‐to‐Liquid Applications. Chemical Engineering & Technology, 37, 995–1001 (2014). [CrossRef] [Google Scholar]
  5. T. Takeshita, K. Yamaji, Important roles of Fischer–Tropsch synfuels in the global energy future. Energy Policy, 36, 2773–2784 (2008). [CrossRef] [Google Scholar]
  6. M. E. Dry, The Fischer-Tropsch Processes, Catal. Today, 71, 227–241 (2002). [CrossRef] [Google Scholar]
  7. A.N. Pinheiro, A. Valentini, J.M. Sasaki, A.C. Oliveira, Highly stable dealuminated zeolite support for the production of hydrogen by dry reforming of methane, Appl. Catal. A, 355, 156–168 (2009). [CrossRef] [Google Scholar]
  8. D. J. Wilhelm, S. R. Simbeck A. D. Karp and R. L. Dickenson, Syngas Production for Gas-to-Liquids Applications: Technologies, Issues and Outlook, Fuel Process Technol., 71, 139–148 (2001). [CrossRef] [Google Scholar]
  9. X. Hao, “Simulation Analysis of a Gas-to-Liquid Process Using Aspen Plus”, Chem. Eng. Technol., 31, 188–196 (2008). [CrossRef] [Google Scholar]
  10. DL Trimm, The formation and removal of coke from nicket catalyst, Catal Rev-Sci Eng. 16, 155–189 (1977). [CrossRef] [Google Scholar]
  11. XE Verykio, Catalytic dry reforming of natural gas for the production of chemicals and hydrogen, International Journal of Hydrogen Energy, 28, 1045–1063 (2003). [Google Scholar]
  12. J.R. Rostrup-Nielsen, Syngas in perspective, Catal. Today 71, 243–247 (2002). [CrossRef] [Google Scholar]
  13. K. Aasberg-Petersen, J.-H. Bak Hansen, T. S. Christensen, I. Dybkjaer, P. S. Christensen, C. S. Nielsen, S. E. L. Winter Madsen and J. R. Rostrup-Nielsen, Technologies for Large-Scale Gas Conversion, Appl. Catal. A, 221, 379–387 (2001). [CrossRef] [Google Scholar]
  14. Y. Yang, H.W. Xiang, R.L. Zhang, B. Zhang, Y.W. Li, A highly active and stable Fe–Mn catalyst for slurry Fischer–Tropsch synthesis, Catalysis Today, 106, 170–175 (2005). [CrossRef] [Google Scholar]
  15. A.K. Dalai and B.H. Davis, Fischer-Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts, Applied Catalysis A: General, 348, 1–15 (2008). [CrossRef] [Google Scholar]
  16. Y. J. Lee, S. I. Hong, D, J Moon, Studies on the steam and CO2 reforming of methane for GTL-FPSO applications, Catalysis Today, 174, 31–36 (2011). [CrossRef] [Google Scholar]
  17. Y. H. Kim, D. Y. Hwang, S. H. Song, S. B. Lee, E. D. Park, and M. J. Park, Kinetic parameter estimation of the Fischer-Tropsch synthesis reaction on K/Fe-Cu-Al catalysts, Korean J. Chem. Eng., 26, 1591–1600 (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.