Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06091
Number of page(s) 6
Section Chapter 6 Materials Science
DOI https://doi.org/10.1051/matecconf/20166706091
Published online 29 July 2016
  1. A. Lopez-Delgoda, F.J. Alguacil, F.A. Lopez, Recovery of iron from bio-oxidized sulphuric pickling waste water by precipitation as basic sulphates, Hydrometallurgy 45 (1997) 97–112. [CrossRef]
  2. V.S.T. Ciminelli, A. Dias, H.C. Braga, Simultaneous production of impurity-free water and magnetite from steel pickling liquors by microwave-hydrothermal processing, Hydrometallurgy 84 (2006) 37–42. [CrossRef]
  3. T. Ozdemir, C. Oztin, N.S. Kincal, Treatment of waste pickling liquors: process synthesis and economic analysis, Chem. Eng. Commun. 193 (2006) 548–563. [CrossRef]
  4. M. Schiemann, S. Wirtz, V. Scherer, F. Barhold, Spray roasting of iron chloride FeCl2: Numerical modelling of industrial scale reactors, Powder Technol. 245 (2013) 70–79. [CrossRef]
  5. A.S. Ferreira, M.B. Mansur, Statistical analysis of the spray roasting operation for the production of high quality Fe2O3 from steel pickling liquors, Process Saf. Environ. Prot. 89 (2011) 172–178. [CrossRef]
  6. B. Kirci, B. Ebin, S. Gurmen, Production and characterization of submicron hematite (α-Fe2O3) particles by ultrasonic spray pyrolysis method, AIP Conf. Proc. 1569 (2013) 265–268. [CrossRef]
  7. K. Jozsef, M. Andor, S. Miklos, Method for the cyclic electrochemical processing of sulfuric acid-containing pickle waste liquors, U.S. patent 3, 969, 207 (1976).
  8. U. Kerney, Treatment of spent pickling acid from hot dip galvanising, Res. Conserv. Recycl. 10 (1994) 145–151. [CrossRef]
  9. M. Darroudi, M. Hakimi, E. Goodarzi, R.K. Oskuee, Superparamagnetic iron oxide nanoparticles (SPIONs): Green preparation, characterization and their cytotoxicity effects, Ceramics International 40 (2014) 14641–14645. [CrossRef]
  10. K.A. Kraus, F. Nelson, J.F. Baxter, Anion-exchange studies. Separation of sulfuric acid from metal sulfates by anion exchange, J. Am. Chem. Soc. 75 (1953) 2768–2770. [CrossRef]
  11. S. Langova, D. Matysek, Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation, Hydrometallurgy 101 (2010) 171–173. [CrossRef]
  12. F. Rogener, M. Sartor, A. Ban, D. Buchloh, T. Reichardt, Metal recovery from spent stainless steel pickling solutions, Resources, Conservation and Recycling 60 (2012) 72–77. [CrossRef]
  13. J.C. Villalba, S. Berezoski, K.D.A. Cavicchiolli, V. Galvani, F.J. Anaissi, Structural refinement and morphology of synthetic akaganèite crystals, [β-FeO(OH)], Mater. Lett. 104 (2013) 17–20. [CrossRef]
  14. M. Ristic, S. Music, M. Godec, Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions, J. Alloys Compd. 417 (2006) 292–299. [CrossRef]
  15. S. Bashir, R.W. McCabe, C. Boxall, M.S. Leaver, D. Mobbs, Synthesis of α- and β-FeOOH iron oxide nanoparticles in non-ionic surfactant medium, J. Nanopart Res. 11 (2009) 701–706. [CrossRef]
  16. F.X. Geng, Z.G Zhao, H.T Cong, J.X. Geng, H.M. Cheng, An environment-friendly microemulsion approach to α-FeOOH nanorods at room temperature, Mater. Res. Bull. 41 (2006) 2238–2243. [CrossRef]
  17. S. Krehula, S. Popovic, S. Music, Synthesis of acicular a-FeOOH particles at a very high pH, Mater. Lett. 54 (2002) 108–113. [CrossRef]
  18. A. Jaiswal, S. Banerjee, R. Mani, M.C. Chattopadhyaya, Synthesis, characterization and application of goethite mineral as an adsorbent, J. Environ. Chem. Eng. 1 (2013) 281–289. [CrossRef]
  19. L. Duraesa, B.F.O. Costa, J. Vasques, J. Campos, A. Portugal, Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis, Mater. Lett. 59 (2005) 859–863. [CrossRef]
  20. L. Martinez, D. Leinen, F. Martín, M. Gabas, J.R. Ramos-Barrado, E. Quagliata, E.A. Dalchiele, Electrochemical Growth of Diverse Iron Oxide (Fe3O4, α-FeOOH, and γ-FeOOH) Thin Films by Electrodeposition Potential Tuning, J. Electrochem. Soc. 154 (2007) D126–D133. [CrossRef]
  21. S.H. Jiao, L.F. Xu, K.L. Hu, J.J. Li, S. Gao, D.S. Xu, Morphological Control of γ-FeOOH Nanostructures by Electrodeposition, J. Phys. Chem. C 114(2010) 269–273. [CrossRef]
  22. D.E. Zhang, X.J. Zhang, X.M. Ni, H.G. Zheng, Preparation and characterization of α-FeOOH nanorods via an ethylenediamine-assisted route, Mater. Lett. 60 (2006) 1915–1917. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.