Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06082
Number of page(s) 8
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Compos. Part B-Eng. 42 (2011) 856–873. [Google Scholar]
  2. H.L. Yin, X.Q. Peng, T.L. Du, J. Chen, Forming of thermoplastic plain woven carbon composites: An experimental investigation, J. Thermoplast. Compos. 28 (2015) 730–742. [CrossRef] [Google Scholar]
  3. F. Abbassi, I. Elfaleh, S. Mistou, A. Zghal, M. Fazzini, T. Djilali, Experimental and numerical investigations of a thermoplastic composite (carbon/PPS) thermoforming, Struct. Control Hlth. 18 (2011) 769–780. [CrossRef] [Google Scholar]
  4. G. Lebrun, M.N. Bureau, J. Denault, Thermoforming-stamping of continuous glass fiber/ polypropylene composites: interlaminar and tool-laminate shear properties, J. Thermoplast. Compos. 17 (2004) 137–165. [CrossRef] [Google Scholar]
  5. A.C. Long, C.E. Wilks, C.D. Rudd, Experimental characterisation of the consolidation of a commingled glass/polypropylene composite, Compos. Sci. Technol. 61 (2001) 1591–1603. [CrossRef] [Google Scholar]
  6. D.H. Kim, W.I. Lee, K. Friedrich, A model for a thermoplastic pultrusion process using commingled yarns, Compos. Sci. Technol. 61 (2001) 1065–1077. [CrossRef] [Google Scholar]
  7. F. Perrin, M.N. Bureau, J. Denault, J.I. Dicksona, Mode I interlaminar crack propagation in continuous glass fiber/polypropylene composites: temperature and molding condition dependence, Compos. Sci. Technol. 63 (2003) 597–607. [CrossRef] [Google Scholar]
  8. M. Sadighi, E. Rabizadeh, F.J. Kermansaravi, Effects of laminate sequencing on thermoforming of thermoplastic matrix composites, Mater. Process. Tech. 201 (2008) 725–730. [CrossRef] [Google Scholar]
  9. M. Robert, R. Roy, B. Benmokrane, Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications, Polym. Composite. 31 (2010) 604–611. [Google Scholar]
  10. J.P. Dear, H. Lee, S.A. Brown, S A. rown Impact damage processes in composite sheet and sandwich honeycomb materials, Int. J. Impact. Eng. 32 (2005) 130–154. [CrossRef] [Google Scholar]
  11. H. Ning, G.M. Janowski, U.K. Vaidya, Vaidya, G. Husman, Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle, Compos. Struct. 80 (2007) 82–91. [CrossRef] [Google Scholar]
  12. C. Lu, M.Y. Zhao, L. Jie, J. Wang, Yu. Gao, X. Cui, P. Chen, Stress Distribution on Composite Honeycomb Sandwich Structure Suffered from Bending Load, Procedia Eng. 99 (2015) 405–412. [CrossRef] [Google Scholar]
  13. X.Y. Wang, F.B. Yang, J.C. Zhang, J.Y. Xiao, Design principle and application of sandwich structure composite material, Chemical Industry, Beijing, 2007, pp. 105–107. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.