Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06041
Number of page(s) 13
Section Chapter 6 Materials Science
DOI https://doi.org/10.1051/matecconf/20166706041
Published online 29 July 2016
  1. F L Matthews, R D. Rawlings Composite materials: engineering and science[M]. London: Chapman and Hall, 1994. [Google Scholar]
  2. V M. Karbhari Durability of composites for civil structural applications[M]. 1st ed. New York: CRC Press, 2007. [Google Scholar]
  3. J P Won, C G. Park Effect of environmental exposure on the mechanical and bonding properties of hybrid FRP reinforcing bars for concrete structures[J]. Journal of Composites Material, 2006;40:1063–76. [CrossRef] [Google Scholar]
  4. ACI 440.1R-06. Guide for the design and construction of structural concrete reinforced with FRP bars, 2006. [Google Scholar]
  5. D. Wo. Encyclopedia of Composites [M]. Chemical industry press, 2000, 11–12. [Google Scholar]
  6. S. Zhong, Q. Xu, G. Wang. Juhewu Jiangjie Yu Wendinghua [M]. Chemical industry press, 2002, 2–8. [Google Scholar]
  7. Brian Burks, Maciej Kumosa. The effects of atmospheric aging on a hybrid polymer matrix composite[J]. Composites Science and Technology, 2012,72:1803–1811. [Google Scholar]
  8. J.Y. Meng, Y. Y. Wang, Q. Zhao. Accelerated aging mechanism of unsaturated polyester[J]. Failure Analysis and Prevention, 2009, 4(2):65–70. [Google Scholar]
  9. J. Zhang, Y. Chen, Accelerated aging behavior of aircraft structural composite[J]. Science Technology and Engineering, 2008, 8(23):6338–6342. [Google Scholar]
  10. X. Lü, Q. Zhang, Z. Ma. Study of hygrothermal aging effect on mechanical properties of carbon fiber/epoxy resin composites [J]. Journal of Materials Engineering, 2005(11):50–57. [Google Scholar]
  11. T. Ma, S. Bai, R. Luo. Mechanical properties of carbon fiber reinforced epoxy resin composites after aging in water and its mechanism [C]. Journal of 14th National Conference on Composite Materials, 2006, 417–422. [Google Scholar]
  12. L. Monney, C. Dubois, D. Perreux. Mechanical behavior of an epoxy-glass composite under photo-oxidation [J]. Polymer Degradation and Stability, 1999, 63:219–224. [CrossRef] [Google Scholar]
  13. M. Zhan, D. Liu. Acid rain cycling aging properties and mechanism of unidirectional glass fiber reinforced epoxy resin composites [J]. Fiber Reinforced Plastics/Composites, 2007(3):28–32. [Google Scholar]
  14. J. Liu, L. Zhao, S. Li. Effect of salt spray on mechanical properties of glass fiber reinforced polymer composites [J]. Acta Materiae Compositae Sinica, 2007, 24(3):18–22. [Google Scholar]
  15. C. Zhu, Q. Zhao, J. Meng. 191# Unsaturated polyester/GFRP artificial accelerated aging research [J]. Failure Analysis and Prevention, 2008, 3(3):12–16. [Google Scholar]
  16. K. Liao, C. R. Schultheisz, D. L. Hunston. Effects of environmental aging on the properties of pultruded GFRP [J]. Composites: Part B, 1999, 30:485–493. [Google Scholar]
  17. L. Yuan, B. Gu, Y. Chen. Study on thermal-oxidative aging damage of fiber reinforced rubber sealing material part I – the model of thermal-oxidative aging damage [J]. Lubrication Engineering, 2006(1):78–80. [Google Scholar]
  18. M. Akay, G. Spratt, B. Meenan. The effects of long-term exposure to high temperatures on the ILSS and impact performance of carbon fiber reinforced bismaleimide [J]. Composites Science and Technology, 2003, 63:1053–1059. [CrossRef] [Google Scholar]
  19. Q.V. Dinh, G. Marco, C.L.F. Marie. Experimental characterization of thermo-oxidation-induced shrinkage and damage in polymer–matrix composites[J]. Composites, Part A,2012,43: 577–586. [CrossRef] [Google Scholar]
  20. Y. Zhang, J. Xiong, Y. Zuo, Thermal-oxidative aging mechanisms of carbon fiber/epoxy resin composites[J]. Journal of Beijing University of Chemical Technology, 2007, 34(5): 523–527. [Google Scholar]
  21. X. Li, F. Xu, X. Chen. Study of thermal-oxidative aging of advanced polymer-matrix composites[J]. Journal of Materials Engineering, 1999(12):2–8. [Google Scholar]
  22. W. Lei, T. Yang. Effect of thermal-oxidative aging on properties of hemp fiber/unsaturated polyester resin composites[J]. Fiber Reinforced Plastics/Composites, 2009(5):36–40. [Google Scholar]
  23. M. Guo, Y. Zhao, F. Xu, Study of aging of advanced polymer-matrix composites I. thermo-oxidative aging[J]. Journal of Materials Engineering, 2000(21): 62–65. [Google Scholar]
  24. K. Apisit, R. Vichai, H. Hiroyuki, at al. Anti-fungal performance and mechanicalemorphological propertiesof PVC and wood/PVC composites under UV-weathering aging and soil-burial exposure[J]. International Biodeterioration and Biodegradation,2014,91:128–137. [CrossRef] [Google Scholar]
  25. C. Guo Effects of hygrothermal aging on structures and properties of cyanate/epoxy novolac blends [J]. Acta Materiae Compositae Sinica, 2002, (3):6–9. [Google Scholar]
  26. J.g Xu, K. Henk, B. Frans, et al. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics[J]. Composites: Part A,2014,57:49–58. [CrossRef] [Google Scholar]
  27. M. Sakai, R. Matsuyama, T. Miyajima. The pull-out and failure of a fiber bundle in a carbon fiber reinforced carbon matrix composite [J]. Carbon, 2000, (38):2123–2131. [CrossRef] [Google Scholar]
  28. H.S. Choi, K. J. Ahn, J.D. Nam. Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments [J]. Composites: part A, 2001, 32:709–720. [Google Scholar]
  29. X. Wang, G. Liang, W. Zhang. Effects of hydrothermal aging on properties of high-performance composites [J]. Journal of Solid Rocket Technology, 2009, 29(3):301–304. [Google Scholar]
  30. T. Zhou, Y. Yu, W. Chen. Hygrothermal aging behavior of vinyl ester resin and its CF composite [J]. Polymer Materials Science & Engineering, 2006, 22(5): 166–169. [CrossRef] [Google Scholar]
  31. W. Chen, C. Wang, T. Zhou. Study on hydrothermal properties of carbon fiber composites with multi-frequency dynamic mechanical thermal analysis [J]. Journal of Materials Engineering, 2006(27):355–365. [Google Scholar]
  32. M. Guo, Y. Zhao. Study on hygrothermal ageing mechanisms of aerospace structural composites [J]. Aerospace Materials & Technology, 2002(4): 51–54. [Google Scholar]
  33. Y. Xiao, X. Wang, L. Lu. Study on the hygrothermal ageing of glass fiber reinforced thermoplastic polyester composite [J]. Engineering Plastics Application, 2001, 29(9):35–37. [Google Scholar]
  34. Y. Tsai, E. Bosze, E. Barjasteh. Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites [J]. Composites Science and Technology, 2009, (69):432–437. [CrossRef] [Google Scholar]
  35. M. Foulc, A. Bergeret, L. Ferry, et al. Study of hygrothermal ageing of glass fiber reinforced PET composites [J]. Polymer Degradation and Stability, 2005, (89):461–470. [CrossRef] [Google Scholar]
  36. M. Beg, K. Pickering. Reprocessing of wood fibre reinforced polypropylene composites Part II: hygrothermal ageing and its effects [J]. Composites: Part A, 2008, (39):1565-1571. [Google Scholar]
  37. H. Mohammad, U. Priyank, R. Samit., et al. The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature[J]. Composite Structures,2014,108:57–64. [CrossRef] [Google Scholar]
  38. U. Priyank, R. Samit, H. Haque. Mohammad., et al. A novel numerical–experimental approach for predicting delamination in high temperature polymer matrix composites[J]. Composite Structures, 2013,104: 118–124. [CrossRef] [Google Scholar]
  39. S. Patel, S. Case. Durability of a graphite/epoxy woven composite under combined hygrothermal conditions[J]. International Journal of Fatigue, 2000(22):809–820. [CrossRef] [Google Scholar]
  40. Brian Burks, James Middleton, Maciej Kumosa. Micromechanics modeling of fatigue failure mechanisms in a hybrid polymer matrix composite [J]. Composites Science and Technology, 2012,72: 1863–1869. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.