Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06007
Number of page(s) 10
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. L.H. Eersels, G.J. Custers, G.J. Ensing, D.M. Herscheid, A simple and efficient method to remove free radioi odide from I-radiopharmaceuticals, Eur J Nucl Med 22 (1995) 1185–1186. [CrossRef] [Google Scholar]
  2. H. Inoue, M. Kagoshima, Removal of 125I from radioactive experimental waste with an anion exchange paper membrane, Appl Radiat Isotopes 52 (2000)1407–1412. [CrossRef] [Google Scholar]
  3. H. Inoue, Effects of co-ions on transport of iodide ions through a non-conventional anion exchange paper membrane, J Membrane Sci 228 (2004)209–215. [CrossRef] [Google Scholar]
  4. J. Bors, A. Gorny, S. Dultz, Sorption characteristics of radioi odide on organophilic bentonite, Radiochim Acta 78 (1997)117–121. [CrossRef] [Google Scholar]
  5. H. Faghihian, M.G. Maraghheh, A. Malekpour, Adsorption of radioactive iodide by natural zeolites, J Radioanal Nucl Ch 254 (2002)545–550. [CrossRef] [Google Scholar]
  6. H. Faghihian, A. Malekpour, M.G. Maragheh, Removal of radioactive iodide by surfactant-modified zeolites, Adsorpt Sci Technol 21 (2003) 373–381. [CrossRef] [Google Scholar]
  7. E. Cheielewská-Horvathová, J. Lesný, Iodide adsorption on the surface of chemically pretreated clinoptilolite, J Nucl Ch Lett 200 (1995) 351–363. [Google Scholar]
  8. S. Kaufhold, M. Pohlmann-Lortz, R. Dohrmann, About the possible upgrade of bentonite with respect to iodide retention capacity, Nüesch R Appl Clay Sci 35 (2007) 39–46. [CrossRef] [Google Scholar]
  9. K. Takenshita, Y. Takashima, S. Matsumoto, S.I. Inami, Effect of grain size of AgNO3 loaded in porous material on adsorption of CH3I, J Nucl Sci Technol 32 (1995) 941–943 [CrossRef] [Google Scholar]
  10. H. Mineo, M. Gotoh, M. Iizuka, S. Fujisaki, G. Uchiyama, A simple model predicting iodine profile in a packed bed of silica-gel impregnated with silver nitrate, J Nucl Sci Technol 39 (2002) 241–247. [CrossRef] [Google Scholar]
  11. J.S. Hoskins, T. Karanfil, S.M. Serliz, Removal and sequestration of iodide using silver-impregnated activated carbon, Environ Sci Technol 36 (2002)784–78. [CrossRef] [Google Scholar]
  12. T. Karanfil, E.C. Moro, S.M. Serkiz, Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide, Environ Technol 26 (2005)1255–1262. [CrossRef] [Google Scholar]
  13. Y. Jiang, Z.J. Wu, L.J. You, H. Xiang, Bis(trimethyloxysilylpropyl)amine and tetraethoxysilane derived gels as effective controlled release carriers for water-soluble drugs of small molecules, Colloid Surface B 49 (2006) 55–59. [CrossRef] [Google Scholar]
  14. G.R. Pan, D.W. Schaefer, W.J. Ooij, M.S. Kent, J. Majewski, H. Yim, Morphology and water resistance of mixed silane films of bis[3-(triethyloxysilyl)propy]tetrasulfide and bis-[trimethyloxysilylpropyl]amine, Thin Solid Films 515 (2006) 2771–2780. [CrossRef] [Google Scholar]
  15. H.F. Zhang, H.N. Liu, M. Guo, X.S. Ye, Q. Li, Z.J. Wu, Rapid determination of trace iodide in solutions by UV spectrophotometry, J Anal Sci 27 (2011) 238–240 (in chinese). [Google Scholar]
  16. H.F. Zhang, T. Guo, Q. Li, X.S. Ye, Z.J. Wu, Simultaneous determination of nitrate and iodide ions in aqueous solutions by dual-wavelength spectrophotometry, Chinese J Inorg Anal Ch 1 (2011) 24–28 (in chinese). [Google Scholar]
  17. S. Mustafa, B. Dilara, K. Nargis, A. Naeem, P. Shahida, Surface properties of the mixed oxides of iron and silica, Colloid and Surface A 205 (2002) 273–282. [CrossRef] [Google Scholar]
  18. P.L. Meo, F. D’Anna, M. Gruttadauria, S. Riela, R. Noto, Synthesis and characterization of new polyamino-cyclodextrin materials, Carbohyd Res 347 (2012) 32–39. [CrossRef] [Google Scholar]
  19. V. Amendola, G. Bergamaschi, M. Boiocchi, L. Fabbrizzi, N. Fusco, The solution stability of copper(I) and silver(I) complexes with N-heterocyclic carbenes, Dalton T 40 (2011) 8367–8376. [CrossRef] [Google Scholar]
  20. Z.F. Gesse, V.A. Isaeva, G.I. Repkin, V.A. Sharnin, Dependence of the enthalpies of formation of Ag+ complexes with glycinate ion and the protonation of glycinate ion on the content of aqueous ethanol solvent, Russ J Phys Chem A 86 (2012) 59–64. [CrossRef] [Google Scholar]
  21. J. Dessingou, A. Mitra, K. Tabbasum, G.S. Baghel, C.P. Rao, Benzimidazole conjugate of 1, 1’-thiobis(2-naphthol) as switch-on fluorescence receptor for Ag+ and the complex as secondary recognition ensemble toward Cys, Asp, and Glu in aqueous methanolic solution: synthesis, characterization, ion and amino acid recognition, computational studies, and microscopy features, J Org Chem 77 (2012)371–378. [CrossRef] [Google Scholar]
  22. L.D. Pollo, L.T. Duarte, M. Anacleto, A.C. Habert, C.P. Borges, Polymeric membranes containing silver salts for propylene/propane separation, Braz J Chem Eng 29 (2012) 307–314. [CrossRef] [Google Scholar]
  23. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem Eng J 70 (1998) 115–124. [CrossRef] [Google Scholar]
  24. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J Am Chem Soc 40 (1918)1361–1368. [CrossRef] [Google Scholar]
  25. H.M.F. Freundlich, Over the adsorption in solution, J Phys Chem 63 (1959)1024–1029. [CrossRef] [Google Scholar]
  26. X.S. Ye, Z.J. Wu, W. Li, H.N. Liu, Q. Li, B.J. Qing, M. Guo, F. Ge, Rubidium and cesium ion adsorption by an ammonium molybdophosphate–calcium alginate composite adsorbent, Colloid Surface A 342 (2009) 76–83. [CrossRef] [Google Scholar]
  27. R.I. Yousef, B. El-Eswed, A.H. Al-Muhtaseb, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies, Chem Eng J 171 (2011) 1143–1149. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.