Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06001
Number of page(s) 6
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. W. Chen, C.S. Chen, H.J.M. Bouwmeester, A. Nijmeijer, L. Winnubst, Oxygen-selective membranes integrated with oxy-fuel combustion, J. Membr. Sci. 463 (2014) 166–172. [CrossRef] [Google Scholar]
  2. A. Leo, S.M. Liu, J.C.D. Da Costa, Development of mixed conducting membranes for clean coal energy delivery, Int. J. Greenh. Gas. Con. 3 (2009) 357–367. [CrossRef] [Google Scholar]
  3. X.F. Zhu, H.Y. Liu, Y. Cong, W.S. Yang, Novel dual-phase membranes for CO2 capture via an oxyfuel route, Chem. Commun. 48 (2012) 251–253. [CrossRef] [Google Scholar]
  4. W. Fang, F.Y. Liang, Z.W. Cao, F. Steinbach, FA. Elfhoff, A mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability, Angew. Chem. Int. Ed. 54 (2015) 4847–4850. [CrossRef] [Google Scholar]
  5. H.W. Cheng, L.F. Luo, W.L. Yao, X.G. Lu, X.L. Zou, Z.F. Zhou, Novel cobalt-free CO2-tolerant dual-phase membranes of Ce0.8Sm0.2O2-δ-Ba0.95La0.05Fe1-xZrxO3-δ for oxygen separation, J. Membr. Sci. 492 (2015) 220–229. [CrossRef] [Google Scholar]
  6. B. Jiang, H.W. Cheng, L.F. Luo, X.G. Lu, Z.F. Zhou, Oxygen permeation and stability of Ce0.8Gd0.2O2-δ-PrBaCo2-xFexO5+δ dual-phase composite membrane, J. Mater. Sci. Technol. 30 (2014) 1174–1180. [CrossRef] [Google Scholar]
  7. Y. Li, H.L. Zhao, N.S. Xu, Y.N. Shen, X.G. Lu, W.Z. Ding, F.S. Li, Systematic investigation on structure stability and oxygen permeability of Sr-doped BaCo0.7Fe0.2Nb0.1O3-δ ceramic membrane, J. Membr. Sci. 362 (2010) 460–470. [CrossRef] [Google Scholar]
  8. M. Sun, X.W. Chen, L. Hong, Influence of the interfacial phase on the structural integrity and oxygen permeability of a dual-phase membrane, ACS. Appl. Mater. Inter. 5 (2013) 9067–9074. [CrossRef] [Google Scholar]
  9. J. Zhang, H.L. Zhao, Y. Li, N.S. Xu, W.Z. Ding, X.G. Lu, F.S. Li, Effects of iron content on the structural evolution, electrical properties and thermochemical stability of BaCo0.9-xFexNb0.1O3-δ ceramic membrane, Int. J. Hydrogen Energy. 35 (2010) 814–820, 2010. [CrossRef] [Google Scholar]
  10. J.X. Yi, J. Brendt, M. Schroeder, M. Martin, Oxygen permeation and oxidation states of transition metals in (Fe, Nb)-doped BaCoO3-δ perovskites, J. Membr. Sci. 387 (2012) 17–23. [Google Scholar]
  11. Z.P. Shao, W.S. Yang, Y. Cong, H. Dong, J.H. Tong, G.X. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane, J. Mater. Chem. 172 (2000) 177–188. [Google Scholar]
  12. J. Xue, Q. Liao, Y.Y. Wei, Z. Li, H. Wang, A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2-δ-40Ba0.5Sr0.5Co0.8Fe0.2O3-δ dual phase membrane, J. Mater. Chem. 443 (2013) 124–130. [Google Scholar]
  13. J.X. Yi, M. Schroeder, T. Weirich, J. Mayer, Behavior of Ba(Co, Fe, Nb)O3-δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design, Chem. Mater. 22 (2010) 6246–6253. [CrossRef] [Google Scholar]
  14. J.X. Yi, M. Schroeder, High temperature degradation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes in atmospheres containing concentrated carbon dioxide, J. Membr. Sci. 378 (2010) 163–170. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.