Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 03040
Number of page(s) 12
Section Chapter 3 Information Technology
DOI https://doi.org/10.1051/matecconf/20166703040
Published online 29 July 2016
  1. R. Bhargavi, K. Kadirvelu, N. S. Kumar. Static and Dynamic Adsorption of Phenol from Aqueous Solution Using Spherical Carbon[J]. AIP Conf. Proc. 2013, 1538(78): 78–88. [CrossRef] [Google Scholar]
  2. F. Sh. W. A. Mohamed M. R. Khater Mostafa. Characterization and phenols sorptive properties of carbons activated by sulphuric acid[J]. Chemical Engineering Journal, 2006, 116: 47–52. [Google Scholar]
  3. A. Chen, G. Zeng, G. Chen, et al. Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol, Chem. Eng. J. 2012, 191: 85–94. [CrossRef] [Google Scholar]
  4. K. J. Choi, S. G. Kim, C. W. Kim, et al. Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A[J]. Chemosphere, 2005, 58: 1535–1545. [CrossRef] [Google Scholar]
  5. C. T. Hsieh, H. S. Teng. Liquid-Phase Adsorption of Phenol onto Activated Carbons Prepared with Different Activated Levels[J]. Journal of Colloid and Interface Science, 2000, 230: 171–175. [CrossRef] [Google Scholar]
  6. I. I. Salame, T. J. Bandosz. Role of surface chemistry in adsorption of phenol on activated carbons[J]. Journal of Colloid and interface Science, 2003, 264: 307–312. [CrossRef] [Google Scholar]
  7. M. Franz, H.A. Arafat, N.G. Pinto, Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon, Carbon, 2000, 38: 1807–1819. [CrossRef] [Google Scholar]
  8. C. C. Leng, N. G. Pinto. Effects of surface properties of activated carbons on adsorption behavior of selected aromatics, Carbon, 1997, 35 (9): 1375–1385. [CrossRef] [Google Scholar]
  9. J. Przepiórski. Enhanced adsorption of phenol from water by ammonia-treated activated carbon[J]. Journal of Hazardous Materials B, 2006, 135: 453–456. [CrossRef] [Google Scholar]
  10. M. F. R. Pereira, S. F. Soares, et al. Adsorption of dyes on activated carbons: influence of surface chemical groups [J]. Carbon, 2003, 41: 811–821. [CrossRef] [Google Scholar]
  11. C. S. Ding, F. M. Ni, J. Miao, et al. Study on preparation of ammonia-modified activated carbon and its adsorption characteristic for phenol [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2011, 35(6): 1237-1241. (In Chinese) [Google Scholar]
  12. G. G. Stavropoulos, P. Samaras, G. P. Sakellaropoulos. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J], Journal of Hazardous Materials 151, 2008, 414–421. [CrossRef] [Google Scholar]
  13. A. M. Oickle, S. L. Goertzen, K. R. Hopper, et al. Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant[J].Carbon, 2010,48 : 3313–3322. [Google Scholar]
  14. S. L. Goertzen, K. D. Theriault, A. M Oickle, et al. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination [J]. Carbon, 2010, 48:1252–1261. [CrossRef] [Google Scholar]
  15. G. F. Liu. Study on adsorption efficiency and mechanism of phenolic endocrine disrupting chemicals on activated carbons with various surface modification [D]. Harbin, Harbin Institute of Technology, 2008. (In Chinese) [Google Scholar]
  16. O. B. Yang, J. C. Kim, J. S. Lee, et.al. Use of activated carbon fiber for direct removal of iodine from acetic acid solution[J]. Industrial Engineering Chemistry Research, 1993, 32 (8): 1692–1697. [CrossRef] [Google Scholar]
  17. Y. S. Ho, J.C.Y. Ng, G. McKay. Kinetics of Pollutant Sorption by Biosorbents: Review [J]. Separation and Purification Methods. 2000, 29(2): 189–232. [CrossRef] [Google Scholar]
  18. S. K. Bhatia, F. Liu, G. Arvind. Effect of Pore Blockage on Adsorption Isotherms and Dynamics: Anomalous Adsorption of Iodine on Activated Carbon[J]. Langmuir, 2000, 16(8): 4001–4008. [CrossRef] [Google Scholar]
  19. W. J. Jr.Weber, J. C. Morris. Equilibria and capacities for adsorption on carbon[J]. Journal of Sanitary Engineering Division. Proceedings of the American Society of Civil Engineers, 1963, 89: 31–59. [Google Scholar]
  20. Ö. Gerçel, A. Özcan, A. S. Özcan. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions[J].Applied Surface Science, 2007, 253: 4843–4852. [CrossRef] [Google Scholar]
  21. B. Agarwal, C. Balomajumder, P. K. Thakur. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon[J]. Chemical Engineering Journal, 2013, 228: 655–664. [CrossRef] [Google Scholar]
  22. J. M. Duan, J. M. Lin, H. D. Fang, et al. Adsorption characteristic of modified steel-making slag for simultaneous removal of phosphorus and ammonium nitrogen from aqueous solution [J]. Chinese Journal of Environmental Engineering, 2012, 6(1): 201-205. (In Chinese) [Google Scholar]
  23. M. Alkan, Ö. Demirbaş, S. Çelikçapa, et al. Sorption of acid red 57 from aqueous solution onto sepiolite[J]. Journal of Hazardous Materials, 2004, 116(1-2): 135–145. [CrossRef] [Google Scholar]
  24. R. W. Coughlin, F. S. Ezra. Role of Surface Acidity in the Adsorption of Organic Pollutants on the Surface of Carbon [J]. Environment Science technology, 1968, 2(4): 291–297. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.