Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 03040
Number of page(s) 12
Section Chapter 3 Information Technology
Published online 29 July 2016
  1. R. Bhargavi, K. Kadirvelu, N. S. Kumar. Static and Dynamic Adsorption of Phenol from Aqueous Solution Using Spherical Carbon[J]. AIP Conf. Proc. 2013, 1538(78): 78–88. [CrossRef]
  2. F. Sh. W. A. Mohamed M. R. Khater Mostafa. Characterization and phenols sorptive properties of carbons activated by sulphuric acid[J]. Chemical Engineering Journal, 2006, 116: 47–52.
  3. A. Chen, G. Zeng, G. Chen, et al. Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol, Chem. Eng. J. 2012, 191: 85–94. [CrossRef]
  4. K. J. Choi, S. G. Kim, C. W. Kim, et al. Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A[J]. Chemosphere, 2005, 58: 1535–1545. [CrossRef]
  5. C. T. Hsieh, H. S. Teng. Liquid-Phase Adsorption of Phenol onto Activated Carbons Prepared with Different Activated Levels[J]. Journal of Colloid and Interface Science, 2000, 230: 171–175. [CrossRef]
  6. I. I. Salame, T. J. Bandosz. Role of surface chemistry in adsorption of phenol on activated carbons[J]. Journal of Colloid and interface Science, 2003, 264: 307–312. [CrossRef]
  7. M. Franz, H.A. Arafat, N.G. Pinto, Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon, Carbon, 2000, 38: 1807–1819. [CrossRef]
  8. C. C. Leng, N. G. Pinto. Effects of surface properties of activated carbons on adsorption behavior of selected aromatics, Carbon, 1997, 35 (9): 1375–1385. [CrossRef]
  9. J. Przepiórski. Enhanced adsorption of phenol from water by ammonia-treated activated carbon[J]. Journal of Hazardous Materials B, 2006, 135: 453–456. [CrossRef]
  10. M. F. R. Pereira, S. F. Soares, et al. Adsorption of dyes on activated carbons: influence of surface chemical groups [J]. Carbon, 2003, 41: 811–821. [CrossRef]
  11. C. S. Ding, F. M. Ni, J. Miao, et al. Study on preparation of ammonia-modified activated carbon and its adsorption characteristic for phenol [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2011, 35(6): 1237-1241. (In Chinese)
  12. G. G. Stavropoulos, P. Samaras, G. P. Sakellaropoulos. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J], Journal of Hazardous Materials 151, 2008, 414–421. [CrossRef]
  13. A. M. Oickle, S. L. Goertzen, K. R. Hopper, et al. Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant[J].Carbon, 2010,48 : 3313–3322.
  14. S. L. Goertzen, K. D. Theriault, A. M Oickle, et al. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination [J]. Carbon, 2010, 48:1252–1261. [CrossRef]
  15. G. F. Liu. Study on adsorption efficiency and mechanism of phenolic endocrine disrupting chemicals on activated carbons with various surface modification [D]. Harbin, Harbin Institute of Technology, 2008. (In Chinese)
  16. O. B. Yang, J. C. Kim, J. S. Lee, Use of activated carbon fiber for direct removal of iodine from acetic acid solution[J]. Industrial Engineering Chemistry Research, 1993, 32 (8): 1692–1697. [CrossRef]
  17. Y. S. Ho, J.C.Y. Ng, G. McKay. Kinetics of Pollutant Sorption by Biosorbents: Review [J]. Separation and Purification Methods. 2000, 29(2): 189–232. [CrossRef]
  18. S. K. Bhatia, F. Liu, G. Arvind. Effect of Pore Blockage on Adsorption Isotherms and Dynamics: Anomalous Adsorption of Iodine on Activated Carbon[J]. Langmuir, 2000, 16(8): 4001–4008. [CrossRef]
  19. W. J. Jr.Weber, J. C. Morris. Equilibria and capacities for adsorption on carbon[J]. Journal of Sanitary Engineering Division. Proceedings of the American Society of Civil Engineers, 1963, 89: 31–59.
  20. Ö. Gerçel, A. Özcan, A. S. Özcan. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions[J].Applied Surface Science, 2007, 253: 4843–4852. [CrossRef]
  21. B. Agarwal, C. Balomajumder, P. K. Thakur. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon[J]. Chemical Engineering Journal, 2013, 228: 655–664. [CrossRef]
  22. J. M. Duan, J. M. Lin, H. D. Fang, et al. Adsorption characteristic of modified steel-making slag for simultaneous removal of phosphorus and ammonium nitrogen from aqueous solution [J]. Chinese Journal of Environmental Engineering, 2012, 6(1): 201-205. (In Chinese)
  23. M. Alkan, Ö. Demirbaş, S. Çelikçapa, et al. Sorption of acid red 57 from aqueous solution onto sepiolite[J]. Journal of Hazardous Materials, 2004, 116(1-2): 135–145. [CrossRef]
  24. R. W. Coughlin, F. S. Ezra. Role of Surface Acidity in the Adsorption of Organic Pollutants on the Surface of Carbon [J]. Environment Science technology, 1968, 2(4): 291–297. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.