Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 03007
Number of page(s) 7
Section Chapter 3 Information Technology
DOI https://doi.org/10.1051/matecconf/20166703007
Published online 29 July 2016
  1. D.M. Shah, D.L. Anton, D.P. Pope, S. Chin, In-situ refractory intermetallic-based composites, Mater. Sci. Eng. A, 192–193 (1995) 658–672. [CrossRef]
  2. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng and J.T. Guo, Microstructure and room temperature mechanical properties of NiAl-Cr(Mo)-(Hf, Dy) hypoeutectic alloy prepared by injection casting, Trans. Nonferrous Met. Soc. China, 23 (2013) 983−990. [CrossRef]
  3. L.Y. Sheng, F. Yang, J.T. Guo, T.F. Xi and H.Q. Ye, Investigation on NiAl-TiC-Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion, Compos. Part B- Eng., 45 (2013) 785–791. [CrossRef]
  4. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, M.G. Mendiratta, J.J. Lewandowski, Ultrahigh-temperature Nb-silicide-based composites, MRS Bulletin, 28 (2003) 646–653. [CrossRef]
  5. J. Kajuch, J. Short, J.J. Lewandowski, Deformation and fracture behavior of Nb in Nb5Si3/Nb laminates and its effect on laminate toughness, Acta Metall. Mater., 43 (1995) 1955–1967. [CrossRef]
  6. J.-H. Kim, T. Tabaru, M. Sakamoto, S. Hanada, Mechanical properties and fracture behavior of an Nbss/Nb5Si3 in-situ composite modified by Mo and Hf alloying, Mater. Sci. Eng. A, 372 (2004) 137–144. [CrossRef]
  7. J.B. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno, S. Hanada, High temperature strength and room-temperature toughness of Nb-W-Si-B alloys prepared by arc-melting, Mater. Sci. Eng. A, 364 (2003) 151–8. [CrossRef]
  8. K. Zelenitsas, P. Tsakiropoulos, Study of the role of Ta and Cr additions in the microstracture of Nb-Ti-Si-Al in situ composites, Intermetallics, 14 (2006) 639–659. [CrossRef]
  9. L.Y. Sheng, L.J. Wang, T.F. Xi, Y.F. Zheng, H.Q. Ye, Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo, Hf) eutectic alloys’ Mater. Design, 32 (2011) 4810–4817.
  10. L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou and H.Q. Ye, Microstructure and mechanical properties of rapidly solidified NiAl-Cr(Mo) eutectic alloy doped with trace Dy, J. Alloy Comp., 475 (2009) 730–734. [CrossRef]
  11. L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, H.Q. Ye, Microstructure evolution and elevated temperature compressive properties of a rapidly solidified NiAl-Cr(Nb)/Dy alloy, Mater. Design, 30 (2009) 2752–2755. [CrossRef]
  12. M.F. Ashby, F.J. Blunt, M. Bannister, Flow characteristics of highly constrained metal wires, Acta Metall., 37 (1989) 1847–1857.
  13. L.Y. Sheng, W. Zhang, J.T. Guo, L.Z. Zhou and H.Q. Ye, Microstructure evolution and mechanical properties’ improvement of NiAl-Cr(Mo)-Hf eutectic alloy during suction casting and subsequent HIP treatment, Intermetallics, 17 (2009) 1115–1119. [CrossRef]
  14. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng and J.T. Guo, Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment, Intermetallics, 27 (2012) 14–20. [CrossRef]
  15. W.Y. Kim, H. Tanaka, A. Kasama, S. Hanada, Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites, Intermetallics, 9 (2001) 827–834. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.