Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 03007
Number of page(s) 7
Section Chapter 3 Information Technology
Published online 29 July 2016
  1. D.M. Shah, D.L. Anton, D.P. Pope, S. Chin, In-situ refractory intermetallic-based composites, Mater. Sci. Eng. A, 192–193 (1995) 658–672. [CrossRef] [Google Scholar]
  2. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng and J.T. Guo, Microstructure and room temperature mechanical properties of NiAl-Cr(Mo)-(Hf, Dy) hypoeutectic alloy prepared by injection casting, Trans. Nonferrous Met. Soc. China, 23 (2013) 983−990. [CrossRef] [Google Scholar]
  3. L.Y. Sheng, F. Yang, J.T. Guo, T.F. Xi and H.Q. Ye, Investigation on NiAl-TiC-Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion, Compos. Part B- Eng., 45 (2013) 785–791. [CrossRef] [Google Scholar]
  4. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, M.G. Mendiratta, J.J. Lewandowski, Ultrahigh-temperature Nb-silicide-based composites, MRS Bulletin, 28 (2003) 646–653. [CrossRef] [Google Scholar]
  5. J. Kajuch, J. Short, J.J. Lewandowski, Deformation and fracture behavior of Nb in Nb5Si3/Nb laminates and its effect on laminate toughness, Acta Metall. Mater., 43 (1995) 1955–1967. [CrossRef] [Google Scholar]
  6. J.-H. Kim, T. Tabaru, M. Sakamoto, S. Hanada, Mechanical properties and fracture behavior of an Nbss/Nb5Si3 in-situ composite modified by Mo and Hf alloying, Mater. Sci. Eng. A, 372 (2004) 137–144. [CrossRef] [Google Scholar]
  7. J.B. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno, S. Hanada, High temperature strength and room-temperature toughness of Nb-W-Si-B alloys prepared by arc-melting, Mater. Sci. Eng. A, 364 (2003) 151–8. [CrossRef] [Google Scholar]
  8. K. Zelenitsas, P. Tsakiropoulos, Study of the role of Ta and Cr additions in the microstracture of Nb-Ti-Si-Al in situ composites, Intermetallics, 14 (2006) 639–659. [CrossRef] [Google Scholar]
  9. L.Y. Sheng, L.J. Wang, T.F. Xi, Y.F. Zheng, H.Q. Ye, Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo, Hf) eutectic alloys’ Mater. Design, 32 (2011) 4810–4817. [Google Scholar]
  10. L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou and H.Q. Ye, Microstructure and mechanical properties of rapidly solidified NiAl-Cr(Mo) eutectic alloy doped with trace Dy, J. Alloy Comp., 475 (2009) 730–734. [CrossRef] [Google Scholar]
  11. L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, H.Q. Ye, Microstructure evolution and elevated temperature compressive properties of a rapidly solidified NiAl-Cr(Nb)/Dy alloy, Mater. Design, 30 (2009) 2752–2755. [CrossRef] [Google Scholar]
  12. M.F. Ashby, F.J. Blunt, M. Bannister, Flow characteristics of highly constrained metal wires, Acta Metall., 37 (1989) 1847–1857. [Google Scholar]
  13. L.Y. Sheng, W. Zhang, J.T. Guo, L.Z. Zhou and H.Q. Ye, Microstructure evolution and mechanical properties’ improvement of NiAl-Cr(Mo)-Hf eutectic alloy during suction casting and subsequent HIP treatment, Intermetallics, 17 (2009) 1115–1119. [CrossRef] [Google Scholar]
  14. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng and J.T. Guo, Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment, Intermetallics, 27 (2012) 14–20. [CrossRef] [Google Scholar]
  15. W.Y. Kim, H. Tanaka, A. Kasama, S. Hanada, Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites, Intermetallics, 9 (2001) 827–834. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.