Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02022
Number of page(s) 7
Section Chapter 2 Electronic Technology
DOI https://doi.org/10.1051/matecconf/20166702022
Published online 29 July 2016
  1. G. Huang, Y. Zhu, Synthesis and photocatalytic performance of ZnWO4 catalyst, Mater. Sci. Eng. B 139 (2007) 201–208. [CrossRef] [Google Scholar]
  2. G. Huang, C. Zhang, Y. Zhu, ZnWO4 photocatalyst with high activity for degradation of organic contaminants, J. Alloys Compd. 432 (2007) 269–276. [CrossRef] [Google Scholar]
  3. F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, Y. Wang, Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal, Opt. Mater. 29 (2007) 1861–1865. [CrossRef] [Google Scholar]
  4. J. Lin, J. Lin, Y. Zhu, Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007) 8372–8378. [CrossRef] [Google Scholar]
  5. L. Zhang, Z. Wang, L. Wang, Y. Xing, Y. Zhang, Preparation of ZnWO4/grapheme composites and its electrochemical properties for lithium-ion batteries, Mater. Lett. 108 (2013) 9–12. [CrossRef] [Google Scholar]
  6. M. Qamar, A. Khan, Mesoporous hierarchical bismuth tungstate as a highly efficient visible-light-driven photocatalyst. RSC Adv. 4 (2014) 9542–9550. [CrossRef] [Google Scholar]
  7. F. Chambon, F. Ratabou, C. Pinel, A. Cabiac, E. Guillon and N. Essayem, Cellulose Conversion with Tungstated-Alumina-Based Catalysts: Influence of the Presence of Platinum and Mechanistic Studies, ChemSusChem 6(2013) 500–507 [CrossRef] [Google Scholar]
  8. L.I. Kuznetsova, A. V. Kazbanova, P. N. Kuznetsov, Textural properties and crystalline structure of tungstated zirconia, a catalyst for isomerization of lower alkanes, Pet. Chem. 52 (2012) 341–345. [CrossRef] [Google Scholar]
  9. E.V. Timofeeva, M.I. Borzenko, G.A. Tsirlina, E.A. Astaf’ev, O.A. Petrii, Mutual indirect probing of platinized platinum/tungstate nanostructural features, J. Solid State Electrochem. 8 (2004) 778–785 [CrossRef] [Google Scholar]
  10. A.A. Kaminskii, H.J. Eichler, K. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, R. Balda, Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals, Appl. Opt. 38 (1999) 4533–4547. [CrossRef] [Google Scholar]
  11. X.X. Luo, W.H. Cao, Upconversion luminescence properties of Li+ -doped ZnWO4:Yb, Er, J. Mater. Res. 23, (2008) 2078–2083 [CrossRef] [Google Scholar]
  12. C.A. Bates, M.J. Oglesbyss, K.J. Standley. The properties of Co2+ in zinc tungstate. I. The EPR spectrum and its interpretation, J. Phys. C: Solid State Phys. 5 (1972) 2949–2960. [CrossRef] [Google Scholar]
  13. P. F. Schofield, K. S. Knight, G. Cressey, Neutron powder diffraction study of the scintillator material ZnWO4, J. Mater. Sci. Lett. 31 (1996) 2873–2877. [CrossRef] [Google Scholar]
  14. S.Y. Wu, H.N. Dong, EPR Investigation of the Structure of a Rhombic Co2+ Center in an NaF Crystal, Z. Naturforsch. 58a (2003) 285–289. [Google Scholar]
  15. M. L. Du, C. Rudowicz, Gyromagnetic factors and zero-field splitting of t23 terms of Cr3++ clusters with trigonal symmetry: Al2O3, CsMgCl3, and CsMgBr3, Phys. Rev. B 46 (1992) 8974–8976. [CrossRef] [Google Scholar]
  16. H.M. Zhang, S.Y. Wu, P. Xu, L.L. Li, Theoretical studies of the local structures and EPR parameters for various Rh2+ centers in AgCl, J. Mol. Struct. Theochem. 953 (2010) 157–162. [CrossRef] [Google Scholar]
  17. A . Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover, New York, 1986. [Google Scholar]
  18. D. J. Newman, B. Ng, The superposition model of crystal fields, Rep. Prog. Phys. 52 (1989) 699–762. [CrossRef] [Google Scholar]
  19. C. Rudowicz, Z. Y. Yang, Y. Y. Yeung, J. Qin, Crystal field and microscopic spin Hamiltonians approach including spin–spin and spin–other-orbit interactions for d2+ and d8 ions at low symmetry C3 symmetry sites: V3+ in Al2O3, J. Phys. Chem. Solids 64 (2003) 1419–1428. [CrossRef] [Google Scholar]
  20. M. Açikgöz, P. Gnutek, C. Rudowicz, Modeling zero-field splitting parameters for dopant Mn2+ and Fe3+ ions in anatase TiO2 crystal using superposition model analysis, Chem. Phys. Lett. 524 (2012) 49–55. [CrossRef] [Google Scholar]
  21. H. N. Dong, X. S. Liu, Investigations on the local structure and EPR parameters for the trigonal Nd3+ centre in CdS, Mol. Phys. 113 (2015) 492–496. [CrossRef] [Google Scholar]
  22. E. Clementi and D. L. Raimondi, Atomic screening constants from SCF functions, J. Chem. Phys. 38 (1963) 2686–2689. [CrossRef] [Google Scholar]
  23. E. Clementi, D. L. Raimondi and W. P. Reinhardt, Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons, J. Chem. Phys. 47 (1967) 1300–1307. [CrossRef] [Google Scholar]
  24. W. Low, Paramagnetic and optical spectra of divalent cobalt in cubic crystalline fields, Phys. Rev. 109 (1958) 256?265. [CrossRef] [Google Scholar]
  25. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London, 1964. [Google Scholar]
  26. B. R. McGarvey, The isotropic hyperfine interaction, J. Phys. Chem. 71 (1967) 51–66. [CrossRef] [Google Scholar]
  27. E. K. Hodgson, I. Fridovich, Reversal of the superoxide dismutase reaction, Biochem. Biophys. Res. Commun. 54 (1973) 270–274. [CrossRef] [PubMed] [Google Scholar]
  28. A. Abragam, M. H. I. Pryce, The theory of paramagnetic resonance in hydrated cobalt salts, Prog. Roy. Soc. (London) A 206 (1951) 173–191. [CrossRef] [Google Scholar]
  29. M. Tinkham, Paramagnetic Resonance in Dilute Iron Group Fluorides. II. Wave Functions of the Magnetic Electrons, Proc. Roy. Soc. (London) A 236 (1956) 549–563. [CrossRef] [Google Scholar]
  30. Van L. Robbroeck, E. Goovaerts, D. Schoemaker, Electron spin resonance study of Co2+ and Ni+ centers in AgCl (Cu, Co, Ni), Phys. Status Solidi B 132 (1985) 179–187. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.