Open Access
MATEC Web of Conferences
Volume 62, 2016
2016 3rd International Conference on Chemical and Food Engineering
Article Number 03001
Number of page(s) 6
Section Biochemistry
Published online 28 June 2016
  1. M. B. Rao, A. M. Tanksale, M. S. Gathe, V. V. Deshpande; Microbiol. Mol. Biol. Rev., Molecular and Biotechnological Aspects of Microbial Proteases. 62, 597–635 (1998). [Google Scholar]
  2. S. Mikai, N. I. J. Konomi, Y. Sato, M. Era, J. Ninomiya, H. Morita; J. Food Eng., Simultaneous Increase of Glucoamylase and a-Amylase Production in Submerged Co-culture of Aspergillus and Rhizopus Strains.16, 111–121, 123 (2015). [Google Scholar]
  3. D. Raul, T. Biswas, S. Mukhopadhyay, S. K. Das, S. Gupta; Fermentation. Biochem. Res. Int., Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation. 2014, ID568141, 5 (2014) [Google Scholar]
  4. Y. Oda, Y. Ichinose, H. Yamaguchi; Food Sci. Technol. Res., Utilization of Lactobacillus amylovorus as an Alternative Microorganism for Saccharifying Boiled Rice. 8 (2), 166–168, (2002) [CrossRef] [Google Scholar]
  5. F. C. Pavezzi, E. Gomes, R. da Silva; Brazilian J. Microbiol., Production and Characterization of Glucoamylase from Fungus Aspergillus awamori Expressed in Yeast Saccharomyces cerevisiae using Different Carbon Sources. 39, 108–114 (2008). [CrossRef] [Google Scholar]
  6. Y. Hata, H. Ishida, Y. Kojima, E. Ichikawa, A. Kawato, K. Suginami, S. Imayasu; J. Ferment. Bioeng.,Comparison of Two Glucoamylases Produced by Aspergillus oryzae in Solid-State Culture (Koji) and in Submerged Culture. 84, 532–537 (1997). [CrossRef] [Google Scholar]
  7. N. Saigusa and R. Ohba; Food Sci. Technol. Res., Effects of koji Production and Saccharification Time on the Antioxidant Activity of amazake. 13 (2), 162–165 (2007) [CrossRef] [Google Scholar]
  8. S. Yamamoto, Y. Nakashima, J. Yoshikawa, N. Wada, S. Matsugo; Food Sci. Technol. Res., Radical Scavenging Activity of the Japanese Traditional Food, Amazake. 17 (3), 209–218 (2011) [CrossRef] [Google Scholar]
  9. I. Cantabrana, R. Perise, I. Hernández; Intl. J. Gastronomy Food Sci., Uses of Rhizopus oryzae in the Kitchen. 2, 103–111 (2015) [CrossRef] [Google Scholar]
  10. J. A. Mertens and C. D. Skory; Curr. Microbiol., Isolation and Characterization of Two Genes that Encode Active Glucoamylase without a Starch Binding Domain from Rhizopus oryzae. 54, 462–466 (2007) [CrossRef] [Google Scholar]
  11. S. Hayasida; Agric. Biol. Chem., Selective Submerged Production of Three Types of Glucoamylase by a Black-Koji Mold. 39, 2093–2099 (1975) [Google Scholar]
  12. S. Hayashida and P. Q. Florr; Agric. Biol. Chem.,Raw Starch-Digestive Glucoamylase Productivity of Protease-less Mutant from Aspergillus awamori var. kawachi. 45, 2675–2681 (1981) [Google Scholar]
  13. M. Z. Alam, F. Razi, S. A. Aziz, A. H. Molla; Water Air Soil Pollut., Optimization of Compatible Mixed Cultures for Liquid State Bioconversion of Municipal Wastewater Sludge. 149, 113–126 (2003) [CrossRef] [Google Scholar]
  14. P. Nigam and D. Singh; J. Basic Microbiol.,Solid-State (Substrate) Fermentation Systems and Their Applications in Biotechnology. 34, 405–423 (1994) [CrossRef] [Google Scholar]
  15. A. Pandey, P. Selvakumar, C.R. Soccol, P. Nigam; Curr. Sci.,Solid state Fermentation for the Production of Industrial Enzymes. 77 (1), 149–162 (1999) [Google Scholar]
  16. A. Ahamed, P. Vermette; Biochem. Eng. Journal, Enhanced Enzyme Production from Mixed Cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA Grown as Fed Batch in a Stirred Tank Bioreactor. 42, 41–46 (2008) [Google Scholar]
  17. L. Yun-wei and X. Yan; Afr. J. Biotechnol., Improvement of Acid Protease Production by a Mixed Culture of Aspergillus niger and Aspergillus oryzae using Solid-State Fermentation Technique. 10 (35), 6824–6829 (2011) [Google Scholar]
  18. H. Morita, K. Mizuno, M. Matsunaga, Y. Fujio; J. Appl. Glycosci., Raw Starch-Digesting Glucoamylase Production of Rhizopus sp. MKU 40 using a Metal-Ion Regulated Liquid Medium. 46, 15–21 (1999) [CrossRef] [Google Scholar]
  19. G. R. Kingseley, G.Getchell; Clin. Chem., Direct Ultramicro Glucose Oxidase Method for Determination of Flucose in Biologic Fluids. 6, 466–475 (1960) [Google Scholar]
  20. M. L. Anson; J. Gen. Physiol., The Estimation of Pepsin, Trypsin, Papain, and Cathepsin with Hemoglobin. 22, 79–89 (1938) [CrossRef] [Google Scholar]
  21. T. Tanaka, N. Okazaki, M. Kitani; J. Brew. Soc. Japan, Comparison of Growth and Enzyme Production between A. oryzae and Rhizopus sp. Growth of Mold on Uncooked Grains (Part 2). 77 (11), 831–835 (1982) [CrossRef] [Google Scholar]
  22. H. Murakami; Brew. Soc. Japan, Koji-gaku. J. 483 (1986) [Google Scholar]
  23. F. Harayama and H. Yasuhira; J. Brew. Soc. Japan, Comparison between Several Hydrolytic Enzyme Activities of Aspergillus and Those of Rhizopus. 84 (9), 625–629 (1989) [CrossRef] [Google Scholar]
  24. H. Kitano, K. Kataoka, K. Furukaawa, S. Hara; J. Biosci. Bioeng., Specific Expression and Temperature-Dependent Expression of the Acid Protease-Encoding Gene (pepA) in Aspergillus oryzae in Solid-State Culture (Rice-Koji). 93 (6), 563–567 (2007) [CrossRef] [Google Scholar]
  25. H. Hisada, M. Sano, H. Ishida3, Y. Hata, M. Machida; Appl. Microbiol. Biotechnol., Identification of Regulatory Elements in the Glucoamylase-Encoding Gene (gla B) Promoter from Aspergillus oryzae. 97, 4951–4956 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.