Open Access
MATEC Web of Conferences
Volume 61, 2016
The International Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2016)
Article Number 01014
Number of page(s) 5
Section Chapter 1 Applied Physics
Published online 28 June 2016
  1. A. Papoulis, S. U. Pillai. Probability, random variables, and stochastic processes. Tata McGraw- Hill Education, (2002) [Google Scholar]
  2. A. Hyvärinen A, P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 12(3), 429–439 (1999) [Google Scholar]
  3. M. Li, X. Huang, H. Liu, B. Liu, Y. Wu. Prediction of the gas solubility in polymers by a radial basis function neural network based on chaotic self- adaptive particle swarm optimization and a clustering method. Journal of Applied Polymer Science, 130(5), 3825–3832 (2013) [CrossRef] [Google Scholar]
  4. X. M. Wang. Nonlinear Blind Source Separation using GA optimized RBF-ICA and its Application to the Image Noise Removal. International Conference on Biotechnology, Chemical and Materials Engineering, (2011) [Google Scholar]
  5. T. Kurihara, K. Jinno. Analysis of convergence property of PSO and its application to nonlinear blind source separation. IEEE Congress on Evolutionary, (2013) [Google Scholar]
  6. J. Yang, Z. Zhuang, L. Shi. Multi-universe parallel quantum genetic algorithm. ACTA ELECTRONICA SINICA., 32(6), 923–928 (2004) [Google Scholar]
  7. D. S. Broomhead, D. Lowe. Multivariate functional interpolation and adaptive networks. Complex System, 2, 321–355 (1998) [Google Scholar]
  8. J. A. Yang, Y. Zou, Z. Q. Zhuang. Nonlinear blind source separation algorithm using multi-universe parallel quantum genetic algorithm. Journal of Electronics and Information Technology, 2004, 26(8): 1210–1217. [Google Scholar]
  9. G. Li, K. H. Lee, K. S. Leung, Genetic algorithm based on independent component analysis for global optimization. Parallel Problem Solving from Nature-PPSN IX, Springer Berlin Heidelberg, Iceland, 172–181 (2006) [CrossRef] [Google Scholar]
  10. H. Li, C. Wang, D. Zhao. An Improved EMD and Its Applications to Find the Basis Functions of EMI Signals. Mathematical Problems in Engineering, (2015) [Google Scholar]
  11. H. Li, Z. Song, D. Zhao, P. Wang, J. Chen. A Single Channel EMI Signal Separation Method Based on Directly-mean Empirical Mode Decomposition. Journal of Infromation … Computation Science, 12(17), 6333–6340 (2015) [CrossRef] [Google Scholar]
  12. D. Zhao, H. Li, On the computation of inverses and determinants of a kind of special matrices. Applied Mathematics and Computation, 250, 721–726 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.