Open Access
Issue
MATEC Web of Conferences
Volume 60, 2016
2016 3rd International Conference on Chemical and Biological Sciences
Article Number 04011
Number of page(s) 5
Section Renewable energy and energy engineering
DOI https://doi.org/10.1051/matecconf/20166004011
Published online 08 June 2016
  1. Esteves A.A.C.I., Lopes M.S.S., Nunes, P.M.C., Mota J.P.B. (2008). Adsorption of natural gas and biogas components on activated carbon. Separation and Purification Technology, 62, 281–296. [CrossRef] [Google Scholar]
  2. Adewole J.K., Ahmad A.L., Ismail S., Leo C.P. (2013). Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 17: 46–65 [CrossRef] [Google Scholar]
  3. Liu B., Wang W., Wang N., Au C.T. (2014). Preparation of activated carbon with high surface area for high-capacity methane storage. Journal of Energy Chemistry, 23, 662–668. [Google Scholar]
  4. Wang Y., Hashim M., Ercan C., Khawajah A., Othman R. (2011). High Pressure Methane Adsorption on Granular Activated Carbons. 21st Annual Saudi Japan Symposium Catalysts in Petroleum Refining & Petrochemicals Dhahran, Saudi Arabia, November, 2011. [Google Scholar]
  5. Menon V.C., and Komarneni S. (1998). Porous Adsorbents for Vehicular Natural Gas Storage: A Review. Journal of Porous Materials 5, 43–58. [CrossRef] [Google Scholar]
  6. Delevar M. Ghoreyshi A.A., Jananshahi M., Khalili, S, and Nabian N. (2012). The effect of Chemical Treatment on Adsorption of Natural Gas by Multi-Walled Carbon Nanotubes: Sorption Equilibria and Thermodynamic Studies. Chemical Industry & Chemical Engineering Quarterly, 18 (2), 193−207. [Google Scholar]
  7. Lozano V.M.P. {n.d). Methane Storage in Activated Carbon Fibres. Universidat de Alicante. [Google Scholar]
  8. Delavar M, Ghoreyshi A.A., Jahanshahi M., Irannejad M. (2010). Experimental Evaluation of Methane Adsorption on Granular Activated Carbon (GAC) and Determination of Model Isotherm. World Academy of Science, Engineering and Technology, 62, 47-50. [Google Scholar]
  9. Ma, S. (2009). Gas adsorption applications of porous metal–organic frameworks. 2235 Pure Appl. Chem., Vol. 81, No. 12, pp. 2235–2251, [Google Scholar]
  10. Casco M.E., Martínez-Escandell M., Gadea-Ramos E., Kaneko K., Silvestre-Albero J., and Rodríguez-Reinoso F. (2015). High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position. Chem. Mater. 27, 959−964. [CrossRef] [Google Scholar]
  11. Judd R.W., Gladding D.T.M., Hodriean R.C., Batcs D.R., Ingram J.P. M. Allen. (n.d). The Use of Adsorbed Natural Gas Technology for Large Scale Storage. BG Technology, Gas and Research Technology Centre, Loughbrough, U.K. [Google Scholar]
  12. Mason, JA, Veenstra M. and Jeffrey R. (2014). Long Evaluating metal–organic frameworks for natural gas storage. Chem. Sci., 5, 32-51. [CrossRef] [Google Scholar]
  13. Mat T.H, Zakaria Z., Paouhe T.G. Development of Adsorbent Based Natural Gas Storage for Vehicle Application . Department of Chemical Engineering Faculty of Chemical And Natural Resources Engineering Universiti Teknologi Malaysia, VOT 72229. 1-1-100 [Google Scholar]
  14. Yang X.D., Zheng Q.R., Gu A.Z., Lu X.S. (2005). Experimental studies of the performance of adsorbed natural gas storage system during discharge. Applied Thermal Engineering 25: 591–601 [CrossRef] [Google Scholar]
  15. IUPAC Manual of Symbols and Terminology, (1972). Appendix 2, 1, Colloid Surface Chem. Pure and AppI. Chem. 31, 587. [Google Scholar]
  16. Biloe´ S., Goetz V., Guillot A. (2002). Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon, 40, 1295–1308. [CrossRef] [Google Scholar]
  17. Rufford T.E., Zhu J., Hulicova-Jurcakova D. (2014). Green Carbon Materials: Advances and Applications. CRC Press, 6 Mar 2014 - Technology & Engineering – pg .73. [Google Scholar]
  18. Nalwa H S. (2001). Handbook of surfaces and interfaces of Materials. Volume 1, Surface and interface phenomena. Academic Press, San Francisco, USA. Pg. 337. [Google Scholar]
  19. Bimbo N., Physick A.J., Noguera-Díaz A., Pugsley A., Holyfield L.T., Ting V.P., Mays T.J. (2015). High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures. Chemical Engineering Journal 272, 38–47. [CrossRef] [Google Scholar]
  20. Rios R.B., Silva F.W.M., Torres A.E.B., Azevedo D.C.S., Cavalcante Jr C.L. (2009). Adsorption of methane in activated carbons obtained from coconut shells using H3PO4. chemical activation. Adsorption, 15: 271–277 [CrossRef] [Google Scholar]
  21. Bastos-Neto M., Torres A.E.B., Azevedo D.C.S., and Cavalcante Jr C.L. (2005). Methane Adsorption Storage Using Microporous Carbons Obtained from Coconut Shell. Adsorption. 11: 911–915. [CrossRef] [Google Scholar]
  22. Balathanigaimani M.S., Kang H., Shim W., Kim C., Lee J. and Moo H. (2006). Preparation of powdered activated carbon from rice husk and its methane adsorption properties. Korean J. Chem. Eng, 23(4), 663-668. [CrossRef] [Google Scholar]
  23. Sren´scek-Nazzal, J.S., Kamin´ska, W., Michalkiewicz, B., Koren, Z.C. (2013). Production, Characterization and Methane Storage Potential of KOH-Activated Carbon from Sugarcane Molasses. Industrial Crops and Products, 47, 153– 159. [CrossRef] [Google Scholar]
  24. Salehi E., Ghotbi V.T.C., Lay E.N., Shojaei A. (2007). Theoretical and Experimental Study on the Adsorption and Desorption of Methane by Granular Activated Carbon at 25°C. Journal of Natural Gas Chemistry, 16, 415–422 [CrossRef] [Google Scholar]
  25. Xu X.L., Zhao X.X., Sun L.B., Liu X.Q. (2009). Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified b-zeolite, J. Nat. Gas Chem. 18, 167–172 [CrossRef] [Google Scholar]
  26. Grande C.A., Blom R., Moller A. and Mollmer J. (2013). High-pressure separation of CH4/CO2 Using Activated Carbon. Chemical Engineering Science, 89, 10–20. [CrossRef] [Google Scholar]
  27. Aroua, M.K. WanDaud, W.A., Yin, C.A. and Adinata, D. (2008). Adsorption Capacities of Carbon Dioxide, Oxygen, Nitrogen and Methane on Carbon Molecular Basket Derived from Polyethyleneimine Impregnation on Microporous Palm Shell Activated Carbon. Separation and Purification Technology, 62 (3), 609–613. [Google Scholar]
  28. Yang H, Gong M, ChenY. (2011). Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2. Journal of Natural Gas Chemistry 20, 460–464. [CrossRef] [Google Scholar]
  29. Giraldo, L., Moreno-Piraján, J.C. (2011). Novel Activated Carbon Monoliths for Methane Adsorption Obtained from Coffee Husks. Materials Sciences and Applications, 2, 331-339. [CrossRef] [Google Scholar]
  30. Yi H., Li F., Ning P., Tang X., Peng J., Li Y. and Deng H. (2013). Adsorption Separation of CO2, CH4, and N2 on Microwave Activated Carbon. Chemical Engineering Journal, 215–216, 635–642. [CrossRef] [Google Scholar]
  31. Ning P., Li F., Yi H., Tang X., Peng J., Li Y., He D., Deng H. (2012). Adsorption equilibrium of methane and carbon dioxide on microwave-activated carbon. Separation and Purification Technology, 98, 321–326. [CrossRef] [Google Scholar]
  32. Ginzburg Y. (2006). ANG Storage As A Technological Solution For The “Chicken-And-Egg” Problem Of NGV Refuelling Infrastructure Development. 1-17. [Google Scholar]
  33. Vasiliev, L.L., Kanonchik, L.E. Mishkinis D.A. and Rabetsky M.I. (2000). Adsorbed natural gas storage and transportation vessels. Int. J. Thermal Sci., 39, 1047-1055. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.