Open Access
MATEC Web of Conferences
Volume 60, 2016
2016 3rd International Conference on Chemical and Biological Sciences
Article Number 04009
Number of page(s) 5
Section Renewable energy and energy engineering
Published online 08 June 2016
  1. Rånby, B. G., (1951). The Colloidal Properties of Cellulose Micelles. Discussions of the Faraday Society. 11, pp. 158 – 164. [CrossRef] [Google Scholar]
  2. Kimura, F., Kimura, T., Tamura, M., Hirai, A., Ikuno, M. and Horii, F. (2005).Magnetic Alignment of the Chiral Nematic Phase of a Cellulose Microfibril Suspension. Langmuir. 21, pp. 2034 – 2037. [CrossRef] [Google Scholar]
  3. De Menezes, A. Jr., Siqueira, G., Curvelo,A. A. S., and Dufresne,A., (2009). Extrusion and Characterisation of Functionalised Cellulose Whiskers Reinforced Polyethylene Nanocomposites. Polymer. 50, pp. 4552 – 4563. [CrossRef] [Google Scholar]
  4. Beck-Candanedo, S., Roman, M. and Gray, D. G. (2005). Effect of Reaction Conditions on the Properties and Behaviour of Wood Cellulose Nanocrystal Suspensions.Biomacromolecules.6,pp 1048–1054. [CrossRef] [Google Scholar]
  5. Diego Piarpuzan, Julian A. Quintero, Carlos A. Cardona (2011) Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production, Biomass and Bioenergy 35, 1130-1137. [CrossRef] [Google Scholar]
  6. Ohara, S., Kato, T., Fukushima, Y.and Sakoda, A., (2013). Selective Ethanol Production from Reducing Sugars in a Saccharide Mixture.J BiosciBioeng. 115(5), pp. 540 – 543. [Google Scholar]
  7. Poletto, M., Zattera, A. J., Forte, M. M. C., and Santana, R. M. C. (2012). Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresource Technology. 109, pp. 148 – 153. [Google Scholar]
  8. Cheynier, V., Feinberg, M., Chararas, C and Ducauze, C. (1983). Application of Response Surface Methodology to Evaluation of Bioconversion Experimental Conditions. Appl. Env. Microbiol. 45, pp. 634-639. [Google Scholar]
  9. Ruiz, M. M., Cavaillé, J. Y., Dufresne, A., Gérard, J. F., and Graillat, C. (2000).Processing and Characterization of New Thermoset Nanocomposites Based On Cellulose Whiskers. Compos Interfaces. 7(2), pp. 117-131. [CrossRef] [Google Scholar]
  10. Sharma, M., and Yashonath, S. (2007). Size Dependence of Solute Diffusity and Stoke-Einstein Relationship: Effect of Van Der Waals Interactions. Diffusion Fundamentals, pp. 11.1-11.5. [Google Scholar]
  11. Wang, Q. Q., Zhu, J. Y. and Reiner, R. S. (2012). Approaching Zero Cellulose Loss in Cellulose Nanocrystal (CNC) production: Recovery and Characterization of Cellulosic Solid Residues (CSR) and CNC. Cellulose. 19, pp. 2033-2047. [CrossRef] [Google Scholar]
  12. Mukherjee, S. M. and Woods, H. J. (1953). X-ray and Electron Microscope Studies of the Degradation of Cellulose by Sulphuric Acid. Biochim Biophys Acta. 10, pp. 499-511. [CrossRef] [Google Scholar]
  13. Bondeson, D. A. M. and Oksman, K. (2006). Optimization of the Isolation of Nanocrystals From Microcrystalline Cellulose by Acid Hydrolysis. Cellulose. 13, pp. 171-180. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.