Open Access
Issue
MATEC Web of Conferences
Volume 59, 2016
2016 International Conference on Frontiers of Sensors Technologies (ICFST 2016)
Article Number 04002
Number of page(s) 5
Section Environmental Science and Engineering
DOI https://doi.org/10.1051/matecconf/20165904002
Published online 24 May 2016
  1. Khouri, S., Shams, M., & Tam, K. C. (2014). Determination and prediction of physical properties of cellulose nanocrystals from dynamic light scattering measurements. Journal of Nanoparticle Research, 16 (7). http://doi.org/10.1007/s11051-014-2499-7. [CrossRef]
  2. Boluk, Y., & Danumah, C. (2014). Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. Journal of Nanoparticle Research, 16 (1). http://doi.org/10.1007/s11051-013-2174-4. [CrossRef]
  3. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie – International Edition, 50 (24), 5438–5466. http://doi.org/10.1002/anie.201001273. [CrossRef]
  4. Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate Polymers, 99, 649–65. http://doi.org/10.1016/j.carbpol.2013.08.069. [CrossRef]
  5. Hosseini, S. E., & Wahid, M. A. (2013). Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 19, 454–462. http://doi.org/10.1016/j.rser.2012.11.008. [CrossRef]
  6. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society reviews 40. http://doi.org/10.1039/c0cs00108b.
  7. Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, 157 (2-3), 220–229. http://doi.org/10.1016/j.jhazmat.2008.01.024. [CrossRef]
  8. O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99 (15), 6709–6724. http://doi.org/10.1016/j.biortech.2008.01.036. [CrossRef]
  9. Yu, X., Tong, S., Ge, M., Wu, L., Zuo, J., Cao, C., & Song, W. (2013). Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. Journal of Environmental Sciences, 25 (5), 933–943. http://doi.org/10.1016/S1001-0742(12)60145-4. [CrossRef]
  10. L.Y.Lee, X.J.Lee, P.C.Chia, K.W.Tan and S.Gan (2014) Utilization of Cymbopogon citratus (lemon grass) as biosorbent for the sequestration of nickel ions from aqueous solution: Equilibrium, kinetic, thermodynamics and mechanism studies, Journal of the Taiwan Institute of Chemical Engineers 45, 1764-1772. doi:10.1016/j.jtice.2014.02.002. [CrossRef]
  11. Shanmugarajah B., Kiew P. L., Chew M. L., Chong S. Y., Tan K.W. (2015) Isolation of nanocrystalline cellulose (NCC) from palm oil empty fruit bunch (EFB): Preliminary result on FTIR and DLS analysis. Chemical Engineering Transactions, 45, 1705-1710. http://doi:10.3303/CET1545285.
  12. Abraham, E., Deepa, B., Pothan, L. a., Jacob, M., Thomas, S., Cvelbar, U., & Anandjiwala, R. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 86(4), 1468–1475. http://doi.org/10.1016/j.carbpol.2011.06.034 [CrossRef]
  13. Lu, P., & Hsieh, Y.-L. (2012). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87(1), 564–573. http://doi.org/10.1016/j.carbpol.2011.08.022 [CrossRef]
  14. Hu, T. Q., Hashaikeh, R., & Berry, R. M. (2014). Isolation of a novel, crystalline cellulose material from the spent liquor of cellulose nanocrystals (CNCs). Cellulose, 3217–3229. http://doi.org/10.1007/s10570-014-0350-z [CrossRef]
  15. Mueller, S., Weder, C., & Foster, E. J. (2014). Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Advances, 4(2), 907. http://doi.org/10.1039/c3ra46390g [CrossRef]
  16. Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., & Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88(2), 772–779. http://doi.org/10.1016/j.carbpol.2012.01.062 [CrossRef]
  17. Sharma, M., & Yashonath, S. (2007). Size dependence of solute diffusivity and Stokes-Einstein relationship□: effect of van der Waals interaction. Diffusion Fundamentals, 7, 1–15.
  18. Tang, Y., Yang, S., Zhang, N., & Zhang, J. (2013). Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose, 21(1), 335–346. http://doi.org/10.1007/s10570-013-0158-2 [CrossRef]
  19. Kamel, S., Hassan, E. M., & El-Sakhawy, M. (2006). Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. Journal of Applied Polymer Science, 100 (1), 329–334. http://doi.org/10.1002/app.23317. [CrossRef]
  20. Wei, W., Kim, S., Song, M.-H., Bediako, J. K., & Yun, Y.-S. (2015). Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. Journal of the Taiwan Institute of Chemical Engineers, 57, 1–7. http://doi.org/10.1016/j.jtice.2015.05.019. [CrossRef]
  21. Gurgel, L. V. A., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 43 (18), 4479–4488. http://doi.org/10.1016/j.watres.2009.07.017. [CrossRef]
  22. Guo, H., Zhang, S., Kou, Z., Zhai, S., Ma, W., & Yang, Y. (2015). Removal of cadmium(II) from aqueous solutions by chemically modified maize straw. Carbohydr Polym, 115, 177–185. http://doi.org/10.1016/j.carbpol.2014.08.041. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.