Open Access
Issue
MATEC Web of Conferences
Volume 58, 2016
The 3rd Bali International Seminar on Science & Technology (BISSTECH 2015)
Article Number 01018
Number of page(s) 7
Section Chemical Engineering & Food Technology
DOI https://doi.org/10.1051/matecconf/20165801018
Published online 23 May 2016
  1. Abbona F., Boistelle R., Haser R. (1979). Hydrogen bonding in MgHPO4•3H2O (newberyite). Acta Crystallographica, B35, 2514-2518. [Google Scholar]
  2. Abdelrazig B.E.I., Sharp J.H. (1988). Phase changes on heating ammonium magnesium phosphate hydrates. Thermochimica Acta 129,197-215. [CrossRef] [Google Scholar]
  3. Abbona F., Lundager Madsen H. E., Boistelle R. (1988). The final phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentration J. Cryst. Growth. 89, 592-602. [CrossRef] [Google Scholar]
  4. Battistoni P., Fava G., Pavan P., Musacco A., Cecchi F. (1997). Phosphate Removal in Anaerobic Liquors by Struvite Crystallization Without Addition of Chemicals: Preliminary Results, Wat. Res., 31, 2925-2929. [CrossRef] [Google Scholar]
  5. Battistoni P., Pavan P., Prisciandaro M., Cecchi F. (2000). Struvite Crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants, Wat. Res., 34, 3033-3041. [CrossRef] [Google Scholar]
  6. Doyl J.D. and Parsons S.A. (2002). Struvite formation, control and recovery, Water Research Vol.36, 3925–3940. [CrossRef] [PubMed] [Google Scholar]
  7. Frost R.L., Weier M.L., Erickson K.L. (2004). Thermal decomposition of struvite, J. Therm. Anal. Calorim. 76,1025-1033. [CrossRef] [Google Scholar]
  8. Gaterell M.R., Gay R., Wilson R., Gochin R.J., Lester J.N. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets, Env. Technol., 21, 1067-1084. [CrossRef] [Google Scholar]
  9. Graeser S., Wostl W., Bojar H.P., Berlepsch P., Armbruster T., Raber T., Ettinger K., Walter F. (2008). Struvite-(K), KMgPO4·6H2O, the potassium equivalent of struvite a new mineral. European Journal of Mineralogy 20, 629–633. [CrossRef] [Google Scholar]
  10. Lu H. M. and Hardy J. R. (1991). First-principles study of phase transitions in KNO3. Physical Review. B 44, 7215. [CrossRef] [Google Scholar]
  11. Loewenthal R.E., Kornmuller U.R.C., Van Heerden E.P. (1994). Struvite Precipitation in Anaerobic Treatment Systems, In 17th International Symposium on Anaerobic Digestion, Capetown, South Africa,498-507. [Google Scholar]
  12. Kofina A.N., and Koutsoukos P.G. (2005). Spontaneous Precipitation of Struvite from Synthetic Wastewater Solutions, Crystal Growth & Design Vol.5, 489–496. [CrossRef] [Google Scholar]
  13. Musvoto E. V., Wentzel M. C., Ekama G.A. (2000). Integrated Chemical-Physical Process Modeling-Ii. Simulation Aeration Treatment For Anaerobic Digester Supernatant. Water Research, 34, 1868 - 1880. [CrossRef] [Google Scholar]
  14. Mehta C.M. and Batstone D. J. (2013). Nucleation and growth kinetics of struvite crystallization, Water Research Vol. 47, 2890-2900. [CrossRef] [Google Scholar]
  15. Ott H. (1926). Die Strukturen von Mn O, Mn S, Ag F, Ni S, Sn I4, Sr Cl2, Ba F2, praezisions messungen einiger alkalihalogenide. Z. Kristallogr. 63, 222-230. [Google Scholar]
  16. Pernet M., Joubert J.C., Berthet-Colominas C. (1975). Etude par diffraction neutronique de la forme haute pression de FeOOH, Solid State Communications, Volume 17, Issue 12, 15, Pages 1505–1510. [CrossRef] [Google Scholar]
  17. Prince E., (1993). Mathematical Aspects of Rietveld Refinement. The Rietveld Method. Edited by Young, R.A. International Union of Crystallography, Oxford, New York, 43-54. [Google Scholar]
  18. Priestley A.J., Cooney E., Booker N.A., Fraser I.H. (1997). Nutrients in wastewaters-ecological problem or commercial opportunity. Proceedings of the 17th Federal Convention of the Australian Water and Wastewater Association, Melbourne, 1, 340-346. [Google Scholar]
  19. Rietveld H.M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2, 65–71. [Google Scholar]
  20. Rodriguez J.-Carvajal. Program Fullprof.2k, version 3.30, Laboratoire Leon Brillouin, France, June 2005. [Google Scholar]
  21. Snoeying V.L., Jenkins D. (1980). Water Chemistry, John Wiley and Sons Inc., New York. [Google Scholar]
  22. Sarkar A.K. (1991). Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. J. Mater. Sci., 26, 2514–2518. [CrossRef] [Google Scholar]
  23. Schulze-Rettmer R. (1991). The Simultaneous Chemical Precipitation of Ammonium and Phosphate in the Form of Magnesium Ammonium Phosphate, Water Sci. Technol., 23, 659-667 [CrossRef] [Google Scholar]
  24. Stumm W., Morgan J.J. (1996). Aquatic Chemistry, Wiley-Interscience, New York. [Google Scholar]
  25. Shin H.S., Lee S.M. (1997). Removal of Nutrients in Wastewater by Using Magnesium Salts, Env. Technol., 19, 283-290. [CrossRef] [Google Scholar]
  26. Stratful L., Scrimshaw M.D., and Lester J.N. (2001). Conditions influencing the precipitation of magnesium ammonium phosphate, Water Research Vol. 35, 4191–4199. [Google Scholar]
  27. Suzuki K., Tanaka Y., Kuroda K., Hanajima D. and Fukumoto Y. (2005). Recovery of phosphorous from swine wastewater through crystallization, Bioresource Technology Vol. 96, 1544–1550. [CrossRef] [Google Scholar]
  28. Suzuki K., Tanaka Y., Kuroda K., Hanajima D., Fukumoto Y., Yasuda T., Waki M. (2007). Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresource Technology Vol. 98, 1573–1578. [CrossRef] [Google Scholar]
  29. Tünay O., Kabdasli I., Orhon D., Kolçak S. (1997). Ammonia removal by magnesium ammonium phosphate precipitation in industrial wastewaters, Water Sci. Technol., 36, 225-228. [CrossRef] [Google Scholar]
  30. Whitaker A., Jeffery J.W. (1970) . The crystal structure of struvite, MgNH4PO4•6H2O. Acta Crystallographica B26,1429-1440. [CrossRef] [Google Scholar]
  31. Winburn R.S., Grier D.G., McCarthy G.J., Peterson R.B. (2000). Rietveld quantitative X-ray diffraction analysis of NIST fly ash standard reference materials. Powder Diffraction 15, 163-172. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.