Open Access
Issue |
MATEC Web of Conferences
Volume 57, 2016
4th International Conference on Advancements in Engineering & Technology (ICAET-2016)
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 4 | |
Section | Information Systems & Computer Science Engineering | |
DOI | https://doi.org/10.1051/matecconf/20165702009 | |
Published online | 11 May 2016 |
- J.A.J. Sujana, T. Revathi, G. Karthiga, R.V. Raj, Game multi objective scheduling algorithm for scientific workflows in cloud computing, IEEE, 1-6, (2015). [Google Scholar]
- K.A. Saranu, S.Jaganathan, Intensified scheduling algorithm for virtual machine tasks in cloud computing, Springer, 283-290, (2014). [Google Scholar]
- S. Selvarani, G.S. Sadhasivam, Improved cost-based algorithm for task scheduling in cloud computing,” IEEE, 1-5, (2010). [Google Scholar]
- S. Banerjee, M. Adhikari, S. Kar, U. Biswas, Development and analysis of a new cloudlet allocation strategy for QoS improvement in cloud, AJSE, Springer, 40, 1409-1425, (2015). [Google Scholar]
- U.A. Kashif, Z.A. Memon, A.R. Balouch, J.A. Chandio, Distributed trust protocol for IaaS cloud computing, IBCAST, IEEE, 275-279, (2015). [Google Scholar]
- K. Cheng, Y. Bai, R. Wang, Y. Ma, Optimizing soft real-time scheduling performance for virtual machines with XRT-Xen, IEEE, 169-178, (2015). [Google Scholar]
- D. Ding, X. Fan, S. Luo, User-oriented cloud resource scheduling with feedback integration, Springer, 1-22, (2015). [Google Scholar]
- Hu Wu, Zhuo Tang, Renfa Li, A priority constrained scheduling strategy of multiple workflows for cloud computing, IEEE, 1086-1089, (2012). [Google Scholar]
- A.V. Lakra, D.K. Yadav, Multi-objective tasks scheduling algorithm for cloud computing throughput optimization, ICICCC, 48, 107-113, (2015). [Google Scholar]
- C. Lin, S. Lu, Scheduling scientific workflows elastically for cloud computing, IEEE, 746-747, (2011). [Google Scholar]
- Himani, H.S. Sidhu, Cost- deadline based task scheduling in cloud computing, ICACCE, IEEE, 273-279, (2015). [Google Scholar]
- A. Verma, S. Kaushal, Cost- time efficient scheduling plan for executing workflows in the cloud, JGC, Springer , 13, 495-506, (2015). [Google Scholar]
- S. Sindhu, S. Mukherjee, Efficient task scheduling algorithms for cloud computing environment, Springer, 79-83, (2011). [Google Scholar]
- Z. Wang, S. Su, Dynamically hierarchical resource-allocation algorithm in cloud computing environment, Springer, 2748-2766, (2015). [Google Scholar]
- Jia Ru, Jacky Keung, An Empirical investigation on the simulation of priority and shortest-job-first scheduling for cloud based software systems, IEEE, 78-87, (2013). [Google Scholar]
- Q.T. Nguyen, N.Q. Hung, N.H. Tuong, V.H. Tran, N. Thoai, Virtual machine allocation in cloud computing for minimizing total execution time on each machine, IEEE, 241-245, (2013). [Google Scholar]
- A.K. Das, T. Adhikary, C.S. Hong, An intelligent approach for virtual machine and QoS provisioning in cloud computing, IEEE, 462-467, (2013). [Google Scholar]
- R. Achar, P.S. Thilagam, Shwetha D, Pooja H, Roshni, Andrea, Optimal scheduling of computational task in cloud using virtual machine tree, ICEAIT, IEEE, 143-146, (2012). [Google Scholar]
- W.J. Wang, Y.S. Chang, W.T. Lo, Y.K. Lee, Adaptive scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments, Springer, 66, 783-811, (2013). [Google Scholar]
- Liang Ma,Y. Lu, F. Zhang, S. Sun, Dynamic task scheduling in cloud computing based on greedy strategy, Springer, 156-162, (2013). [Google Scholar]
- J.M. Tang, L. Luo, K.M. Wei, A heuristic resource scheduling algorithm for cloud computing based on polygons correlation calculation, ICEBE, IEEE, 365-370, (2015). [Google Scholar]
- S. Singh, I. Chana, QRSF: QoS aware resource scheduling framework in cloud computing, Springer, 71, 241-292, (2014). [Google Scholar]
- S. Singh, I. Chana, Resource provisioning and scheduling in clouds: QoS perspective, Springer, 1-35, (2016). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.